backtop


Print 48 comment(s) - last by reiters.. on Feb 21 at 12:08 PM


Courtesy LiftPort Group
The LiftPort Group has a bold and interesting plan -- to build a massive space elevator before 2020

The LiftPort Group has completed a second round of testing on a prototype space elevator platform that stretches a mile into the sky, which allows a robots to climb and descend the ribbon that is between the two platforms.  The LiftPort Space Elevator would allow a revolutionary way to get cargo and supplies into space -- using a cable thousands of miles long tethered to  an object in geosyncronous orbit.  The company hopes to build the space elevator by the year 2018, but the task will obviously not be easy.  The observation and communication platform that robots climbed is properly dubbed HALE, High Altitude Long Endurance.  HALE was secured in place by several high altitude balloons for over six hours.

The ribbon that will hopefully stretch 62,000 miles from Earth into space will be made of carbon nanotubes weighing less than 1.5 pounds per mile.  Although initial testing was done in Arizona, the space elevator will likely be anchored to an offshore sea platform that will be located somewhere in the Pacific Ocean.


Comments     Threshold


This article is over a month old, voting and posting comments is disabled

RE: Physics
By KristopherKubicki (blog) on 2/16/2006 3:45:31 PM , Rating: 2
quote:
The reason they go up to 63,000km is, I imagine, because the *center of mass* of the elevator has to be in geosynchronous orbit, at whatever height, so the counterweight has to be somewhat higher, and the cable proportionally longer.

Kind of. The reason it extends 62k MILES is because the cable will continue to stay in geosyncronous orbit -- even at that great of a distance. The tip of the cable moving that fast is actually what keeps the whole tether stable.... this way you don't need a coutnerweight.

I read someone earlier that the reason why we don't want to use counterweights anymore is because someone calculated that you would need several tons of counterweight at 32k miles.. or you would need just the weight of the cable moving at a much faster speed.... 32k miles further out. its a neat physics problem to work out.


"Paying an extra $500 for a computer in this environment -- same piece of hardware -- paying $500 more to get a logo on it? I think that's a more challenging proposition for the average person than it used to be." -- Steve Ballmer











botimage
Copyright 2014 DailyTech LLC. - RSS Feed | Advertise | About Us | Ethics | FAQ | Terms, Conditions & Privacy Information | Kristopher Kubicki