backtop


Print 77 comment(s) - last by Visual.. on Feb 19 at 5:48 AM


A view of a 16-qubit processor mounted in its sample holder

A picture of the Orion chip’s sample holder attached to a Leiden Cryogenics dilution fridge

An optical picture of the Orion processor with 16-qubits
Canadian company D-Wave shows off technology that promises to give quantum computing capabilities to mainstream industry

Canadian firm D-Wave Systems unveiled and demonstrated today what it calls “the world's first commercially viable quantum computer.” Company officials announced the technology at the Computer History Museum in Mountain View, California in a demonstration intended to show how the machine can run commercial applications and is better suited to the types of problems that have stymied conventional (digital) computers.

The demonstration of the technology was held at the Computer History Museum, but the actual hardware remained in Burnaby, BC where it was being chilled down to 5 millikelvin, or minus 273.145 degrees Celsius (colder than interstellar space), with liquid helium.

Quantum computers rely on quantum mechanics, the rules that underlie the behavior of all matter and energy, to accelerate computation. It has been known for some time that once some simple features of quantum mechanics are harnessed, machines will be built capable of outperforming any conceivable conventional supercomputer. But D-Wave explains that its new device is intended as a complement to conventional computers, to augment existing machines and their market, not to replace them.

To make the technology commercially applicable, D-Wave used the processes and infrastructure associated with the semiconductor industry. The D-Wave computer, dubbed Orion, is based on a silicon chip containing 16 quantum bits, or “qubits,” which are capable of retaining both binary values of zero and one. The qubits mimic each others’ values allowing for an amplification of their computational power. D-Wave says that its system is scalable by adding multiples of qubits. The company expects to have 32-qubit systems by the end of this year, and as many as 1024-qubit systems by the end of 2008.

"D-Wave's breakthrough in quantum technology represents a substantial step forward in solving commercial and scientific problems which, until now, were considered intractable. Digital technology stands to reap the benefits of enhanced performance and broader application," said Herb Martin, chief executive officer.

Quantum-computer technology can solve what is known as "NP-complete" problems. These are the problems where the sheer volume of complex data and variables prevent digital computers from achieving results in a reasonable amount of time. Such problems are associated with life sciences, biometrics, logistics, parametric database search and quantitative finance, among many other commercial and scientific areas.

As an example, consider the modeling of a nanosized structure, such as a drug molecule, using non-quantum computers. Solving the Schrodinger Equation more than doubles in difficulty for every electron in the molecule. This is called exponential scaling, and prohibits solution of the Schrodinger Equation for systems greater than about 30 electrons. A single caffeine molecule has more than 100 electrons, making it roughly 10^44 times harder to solve than a 30-electron system, which itself makes even high-end supercomputers choke.

Quantum computers are capable of solving the Schrodinger Equation with linear scaling exponentially faster and with exponentially less hardware than conventional computers. For a quantum computers, the difficulty in solving the Schrodinger Equation increases by a small, fixed amount for every electron in a system. Even very primitive quantum computers will be able to outperform supercomputers in simulating nature.

"Quantum technology delivers precise answers to problems that can only be answered today in general terms. This creates a new and much broader dimension of computer applications," Martin said.

"Digital computing delivers value in a wide range of applications to business, government and scientific users. In many cases the applications are computationally simple and in others accuracy is forfeited for getting adequate solutions in a reasonable amount of time. Both of these cases will maintain the status quo and continue their use of classical digital systems," he said.

"It's rational to assume that quantum computers will always contain a digital computing element thereby increasing the amortization of investments already made while expediting the availability of the power of quantum acceleration," he said.

For more technical information quantum computing, read D-Wave founder and CTO Geordie Rose’s blog.



Comments     Threshold


This article is over a month old, voting and posting comments is disabled

RE: Comparison
By Goty on 2/14/2007 6:51:25 PM , Rating: 2
Most current processors have their performance measured in OPS, or operations per second. The true advantage of quantum computing doesn't lie in how many operations you can perform in one second, but rather in how those operations are handled.


RE: Comparison
By Ringold on 2/14/2007 8:31:44 PM , Rating: 3
Thats a little vague, though. What would be nice is how quickly it does pi to 32M. ;)


RE: Comparison
By msva124 on 2/14/2007 8:38:05 PM , Rating: 2
Kind of makes you wonder if the OPS we have available to us now are being handled properly. Like, I'm not sure we have any brilliant software that is just dying to be run on a quantum computer. Do we really need them, or once they arrive will we just mess around with the Schroedinger equation for a while and then give another copout as it's reason for not doing anything brilliant? I hardly see the equation for Strong AI or solving all the world's problems sitting on anyone's desk, stifled by a lack of computing power.


RE: Comparison
By Spoelie on 2/15/2007 4:46:23 AM , Rating: 2
There may not be any use for you, but trust me, the scientific community is dying for these kind of things. A quantum computer will indeed not have any use on a consumer desktop right now, but there are research venues that haven't been attempted up until now because they simply weren't feasible. It's not because you don't know them that they're not there...

You have to look a bit further than Quake 5 here :).


RE: Comparison
By paydirt on 2/15/2007 10:25:40 AM , Rating: 2
Scientists REALLY need more computing power. Breakthroughs with protein structure analysis have the potential to lead to cures for Alzeimer's, HIV, malaria (which kills 1 million people in Africa EVERY year). Here's a link to one of many projects which you can help by donating computing power:

http://boinc.bakerlab.org/rosetta/


"We can't expect users to use common sense. That would eliminate the need for all sorts of legislation, committees, oversight and lawyers." -- Christopher Jennings











botimage
Copyright 2014 DailyTech LLC. - RSS Feed | Advertise | About Us | Ethics | FAQ | Terms, Conditions & Privacy Information | Kristopher Kubicki