backtop


Print 37 comment(s) - last by PrezWeezy.. on Jan 25 at 6:06 PM

Fujitsu announces technology for future hard drive capacity expansion

Fujitsu of America announced another advancement in its research of magnetic recording. Using patterned media technology, Fujitsu was able to achieve a one-dimensional array nanohole pattern with a 25 nanometer pitch. This process could one day enable one terabit per square inch recording on HDDs. Fujitsu also revealed a new development involving perpendicular magnetic recording read/write operation on random patterned media. With this technology, the soft underlayer is used as the PMR media, another important milestone.

A density of one terabit per square inch is about five times greater than the current drive technology on the market. Applying a one terabit areal density figure to today’s drive sizes would give us 3.5” drives capable of storing 5TB or 2.5” notebook drives holding 1.5TB.

Fujitsu first announced innovations with patterned media recording in June 2005. At that time, advancements were made with the introduction of a process to pre-pit aluminum media, resulting in nanoholes with an extremely dense and ordered structure. In addition, a technique called land/groove texturing allowed for the creation of discrete tracks in which the nanoholes could be formed. This progress in patterned media has enabled the development of high capacity hard disk drives, especially in smaller form factors.

This progress in patterned media recording closely follows the November 2006 Fujitsu announcement regarding the optical element being developed for thermal assisted recording, another promising advancement for future capacity increases.



Comments     Threshold


This article is over a month old, voting and posting comments is disabled

RE: So what
By patentman on 1/24/2007 12:45:32 PM , Rating: 2
Suprisingly, the concepts behind perpendicular recording and nanodot media are not all that different. Indeedc, both technologies improve area recording density by reducing the footprint over which an oriented doman exists.

Also, although I doubt the accuracy of Masher2's numbers, he is correct in saying that drive speeds have increased a tremendous amount in the last 25-30 years. The original hard disk was the size of a record player, and had a rotational speed about as fast as an old 45. We are recording now in the low milliseconds, which is extremely fast compared to the media of old.

You have to realize that reading and writing data is not as simple as storing an electron in logic circuit. Sure, the effect is the same (orientation of the Domain indicates a 1 or a 0), but the manner in which that domain gets oriented is actuall very complex relative to sticking an electron in memory. Low milliseconds is blazing fast considering all of the operations that have to go on to orient the domain, and all the balances that have to be struck to ensure that the domain stays in that orientation until it is re-written.


“Then they pop up and say ‘Hello, surprise! Give us your money or we will shut you down!' Screw them. Seriously, screw them. You can quote me on that.” -- Newegg Chief Legal Officer Lee Cheng referencing patent trolls

Related Articles













botimage
Copyright 2014 DailyTech LLC. - RSS Feed | Advertise | About Us | Ethics | FAQ | Terms, Conditions & Privacy Information | Kristopher Kubicki