backtop


Print 62 comment(s) - last by wordsworm.. on Jun 4 at 5:37 PM

Intel announces its “most energy-efficient Intel Core processor” to date

When it comes to processors used in today’s computers (be they laptops, desktops, or servers), Intel remains the king. However, as consumers find themselves increasingly moving away from being tied down to a desktop towards mobile devices, Intel still wants to be at the forefront of innovation when it comes to processor performance and efficiency.
 
With processors based on ARM architecture clearly dominating in the smartphone and tablet space, Intel is looking to push back heavily starting at the convertible PC level and downward. To show its commitment, Intel is introducing a new Core M processor that is based on the 14nm Broadwell architecture. Intel calls the Core M the “most energy-efficient Intel Core processor” to date, and states that the processor will enable a broad range of thin, lightweight, and more importantly, quiet mobile devices.


Intel's Llama Mountain reference design
 
Compared to the previous generation Core offerings, the Core M will have a 60 percent lower TDP, 20 to 40 percent better performance, and a 50 percent smaller package footprint.
 
At Computex, Intel demoed a 2-in-1 device with Core M, codenamed Llama Mountain, which pairs a 12.5” fanless tablet with a detachable keyboard. The tablet itself is just 7.2mm thin, and weighs 1.48 pounds. For comparison’s sake, the recently announced Surface Pro 3 features a 12” display, is 9.1mm thin, and weighs 1.76 pounds.

 Microsoft's Surface Pro 3 is 2.1mm thicker than the Intel reference design

One of the first products to use the new Core M processor is the ASUS Transformer Book T300 Chi which runs Windows 8.1. This convertible PC features a 12.5” IPS display (2560x1440), detachable keyboard, and integrated LTE connectivity.


ASUS Transformer Book T300 Chi
 
There’s no word yet on availability for the Transformer Book T300 Chi, or other devices that will use the Core M.

Sources: Intel, ASUS



Comments     Threshold


This article is over a month old, voting and posting comments is disabled

RE: Not much to go on here.
By Khenglish on 6/3/2014 8:24:25 PM , Rating: 2
I hope they figured out some workaround. Unfortunately I'm worried that they made out roadmaps for 7nm without trying to make the physics for the device work yet.

As for 10nm and under, I completely believe that the parts can physically be made and functional, but that the devices will be slower than 14nm devices.

As for graphine, yield is utterly impossible. You literally cannot have a single atom of variance. If you do that location of your semiconductor becomes a permanent conductor, or a permanent insulator. It is impractical for making a multi-billion transistor processor.

What could work is taking a FET and pulling the gate oxide turning it into a lateral BJT. My college (RPI) has simulated 32nm lateral BJTs at 1.3THz, which is 5 times faster than a 22nm FinFET. People refuse to look at this though since they hear "BJT" and think "that's old we won't even look at it" despite it being a completely different design from the old vertical BJTs. Going the BJT route doesn't solve the scaling problem though, it just immediately offers a faster device.

Going BJT though makes keeping current down problematic. While a single transistor is power competitive with a FET, chains are not without care. When having a chain of logic, the early logic needs to be low current since the current is multiplied by over 100 (beta) at each transistor. This can be used to save power since early logic can now be low power with the final logic meeting the current requirement, but it's still a new concern.


"If you mod me down, I will become more insightful than you can possibly imagine." -- Slashdot














botimage
Copyright 2014 DailyTech LLC. - RSS Feed | Advertise | About Us | Ethics | FAQ | Terms, Conditions & Privacy Information | Kristopher Kubicki