backtop


Print 34 comment(s) - last by Autisticgramma.. on Dec 11 at 3:28 PM

Researchers see new device as path to sub-10 nm circuits

Employing an ultrathin dielectric composed of a 4-nanometer-thick layer of lanthanum aluminate with an ultrathin, 0.5-nanometer layer of aluminum oxide, Purdue University's nanowire transistor of indium-gallium-arsenide (IGA) reaches an important milestone of a 20 nm gate size.

Currently Intel Corp. (INTC) uses a 22 nm process for its Ivy Bridge silicon-based transistors.

The new IGA transistor, like Intel's fin shaped 3D transistors, employs a three-dimensional gate design, but it takes it even a step farther, creating a bizarre stackable design of triple-tapering nanowires that looks like a tiny pine tree.  

Peide "Peter" Ye, a professor of electrical and computer engineering at Purdue University, has an interesting name for his new device -- "the 4D transistor".  He comments, "A one-story house can hold so many people, but more floors, more people, and it's the same thing with transistors.  Stacking them results in more current and much faster operation for high-speed computing. This adds a whole new dimension, so I call them 4-D."

4D Transistor
A series of "4D" transistors [Image Source: Purdue]

He says the superior electron mobility of the new transistor allowed the novel design, and may allow even more ambitious successors.

The new work was published in a pair of papers [PDF] to be presented at the International Electron Devices Meeting on Dec. 8-12 in San Francisco.

Currently the silicon chipmaking industry is in an uncertain state.  14 nm chips are expected for 2015, while researchers hope to shrink to 10 nm by 2018.  But past 14 nm, leakage in current "high K" dielectrics will become to severe for the transistor to operate; hence to stay on course for 2018 researchers must race to discover new dielectrics.

Squeezing past 10 nm will be even trickier, as it's pushing the boundaries of the already strained optical lithography techniques.  Advanced techniques like self-assembly or mechanical manipulation of atoms may prove crucial at features sizes below 10 nm.

Sources: Purdue, Eurekalert



Comments     Threshold


This article is over a month old, voting and posting comments is disabled

RE: yule tree transistor
By Concillian on 12/8/2012 2:51:25 PM , Rating: 2
quote:
But the fourth dimension. Isn't that supposed to be time? The 4D in the name feels wrong.


I suspect reading the actual paper and being more familiar with the area of research would result in context that would suggest they are not talking about the traditional spatial relation "dimensions".

As an example, "dimensions" are unlimited in matrix mathematics. It's only when specifically discussing spatial dimensions that you are limited to 3D.


"Can anyone tell me what MobileMe is supposed to do?... So why the f*** doesn't it do that?" -- Steve Jobs














botimage
Copyright 2014 DailyTech LLC. - RSS Feed | Advertise | About Us | Ethics | FAQ | Terms, Conditions & Privacy Information | Kristopher Kubicki