backtop


Print 17 comment(s) - last by Aries1470.. on Jun 8 at 7:34 AM

Mobile is a work in progress for Intel, but at least it's finally "really there" says new mobile chief

Intel Corp. (INTC) has big plans for x86 smartphones.  Its capable first showingMedfield, demonstrated that Intel could make a decent smartphone system-on-a-chip, even if besting the cream of the ARM Holdings plc (LON:ARM) licensee crop was a work in progress.

I. x86 Windows Phones?  Perhaps.

Intel's initial efforts have focused on Android.  But the company says it's also leaving the door open to another licensed third-party operating system -- Microsoft Corp.'s (MSFT) Windows Phone.  

Hermann Eul, president of Intel's Mobile Communications Group, spoke to the IDG News service at Computex 2012 about the possibility.  He comments, "We would be [interested] when we see [the Windows Phone] market has a good chance to return our money that we have invested into this.  Our roadmap has devices that can support Windows also on phones. So we can do that. The hooks for doing that [are] there."

Nokia Lumia 900
Intel hasn't ruled out x86 Windows Phones. [Image Source: Jason Mick/DailyTech]

Currently, the only smartphone operating system supported by Medfield other than Android is Tizen -- an alternative Linux-based operating system.  The Tizen project recent merged in the code of Meego OS after Intel's Meego partner Nokia Oyj. (OMX:NOK1Vabandoned the project for Windows Phone.

Tizen is also backed by Samsung Electronics Comp., Ltd. (KSC:005930), but Samsung has yet to launch devices using the experimental OS.  Of the nebulous project Intel would only say, "The current trend of statistics is pretty clear, Android is gaining the largest share of the market so that is where the money is.  We support Tizen as well, we haven't announced any product on this, but being in the Tizen alliance it's clear we are also engaged there."

II. From Competitor to Champion: How Intel Plans to Step up Its Mobile Game

Currently, Intel is selling only one single-core smartphone chip SKU -- the Z2460 (a second chip, the single-core 1 GHz Z2000 has been offered, but Intel has no buyers yet).  

But later this year a new chip -- the Z2580 will launch.  That new chip will bump to a dual-core design, as well as add on-die HSPA+ and LTE.  Then in 2013 Intel's best chance at dethroning ARM, the 22 nm die-shrink Merrifield will land.  Intel hopes to follow up with an improved version of the Z2000 for lighter-weight budget smartphones and feature phones.  And then in 2014 it has plans for both an architecture boost and a die shrink to 14 nm.


Intel's tri-gate transistors will boost next year's mobile die-shrink.

For now, despite lacking volume, Mr. Eul says he considers the project a success in that it's generating buzz and dispelling misconceptions about Intel's mobile chances.  He states, "We see substantial interest in our platforms in particular after customers really see the devices in the market and see Intel is really there. With that all the badmouthing on power consumption, and cannot do it, and so on is put to rest."

Intel's efforts in 2012 have impressed, but the company has a tough road ahead if it wants to go from simply "really [being] there" to being a chip that manufacturers will pick over rival designs from Qualcomm, Inc. (QCOM) or NVIDIA Corp. (NVDA) for their smartphones.

Source: ComputerWorld



Comments     Threshold


This article is over a month old, voting and posting comments is disabled

RE: µArchitecture
By name99 on 6/6/2012 8:08:50 PM , Rating: -1
Oh my. So much wrong in one post.

(a) ALL Atom processors are based on the Bonnell µArch, introduced in 2008.
I don't know where your "two years from now" comes from. Do you know what a µArch is?
Nehalem took seven years from conception to shipping --- that's how long it takes to design and verify these CPUs. The only reason we can see an annual tick/tock pattern is that Intel has multiple design teams active on their desktop CPUs. But they clearly feel the cost for doing that in the Atom space is too high.

(b) Hyperthreading has nothing to do with RISC. It is something that makes sense once your core hits a certain base level of features --- things like using register renaming and having an OoO engine. A9 is not yet at that level --- it's analogous to Pentium. But Pentium was followed by P6, a µArch for which hyperthreading would have made sense.
Hyperthreading will certainly come to server ARM; for embedded it may not make sense. The tradeoff is more area (for more cores rather than hyperthreading) but more fine-grained power control (you can fully shut down a core if you don't need it to run). On the other hand, hyperthreading allows you to share amortize some work across two threads worth of computation. I (and pretty much anyone outside ARM) am not in a position to know how these factors balance for optimal low power.

An example of a RISC architecture that has had hyperthreaded implementations for years is POWER.

(c) I specifically DID NOT SAY that the issue was "huge burden of x86" in terms of area or even power. I said the problem was complexity of design and validation. I have given you numbers to prove that assertion.


"I modded down, down, down, and the flames went higher." -- Sven Olsen














botimage
Copyright 2014 DailyTech LLC. - RSS Feed | Advertise | About Us | Ethics | FAQ | Terms, Conditions & Privacy Information | Kristopher Kubicki