backtop


Print 80 comment(s) - last by magnetrain.. on Sep 23 at 10:26 AM


NASA engineers are developing a radical new form of launch that begins aboard an electrified track similar to that of a rollercoaster.  (Source: NASA)

The sled would then fling a scramjet into the air, which would activate and rocket to the upper atmosphere. Once in the upper atmosphere, the scramjet would fire a capsule launch vehicle into space as the final step.  (Source: NASA/Artist concept)
New launch system could be used for manned launches and satellite launches

NASA's budget may be cut, but that hasn't stopped the first international organization to put a man on the Moon from dreaming big.  One key question the agency is looking at is what the next big thing in space propulsion will be.  NASA and foreign space agencies have examined plasma enginesion enginesnuclear-powered designs, and solar sails, but these technologies lack the impulse and thrust to accelerate a launch vehicle into orbit. 

However, NASA's latest proposal may be the most creative idea of them all and has the potential to be relatively affordable.  The new proposal starts by placing a sled on electric tracks -- NASA's sled needs to reach a whopping 600 mph (appr. 1,000 km/h).

At the end of the track, the passenger vehicle, which rests atop the sled, will be flung off, launching at extreme speed.  The passenger vehicle would be a wedge-shaped aircraft, with scramjets aboard, which would activate upon launch.  Those scramjets would accelerate the aircraft to Mach 10.

Wings would gradually angle the craft into the Earth's upper atmosphere.  At the boundaries of the Earth's atmosphere, the scramjet would fire the actual spacecraft -- a capsule.  The maneuver would be akin to firing a round out of a barrel

By using mechanical motion to launch the craft, instead of expensive chemical boosters, the cost of launches could dramatically decrease.

NASA's Stan Starr, branch chief of the Applied Physics Laboratory at Florida's Kennedy Space Center, says the technology to achieve this type of launch isn't that far away.  In a released statement, he explains, "All of these are technology components that have already been developed or studied.  We're just proposing to mature these technologies to a useful level, well past the level they've already been taken.  Essentially you bring together parts of NASA that aren't usually brought together."

Engineers at NASA and the U.S. Air Force have worked on a variety of scramjet projects thus far, including the X-43A and X-51 (a missile design).  So far these programs have had a couple of successful launches and tests under their belt, raising hopes that the technology can soon be applied to projects like the launcher.

Mr. Starr and other NASA engineers have assembled a proposal to build the system, which they're dubbing the Advanced Space Launch System.  They're seeking grants from a variety of sources.

Under the plan Langley Research Center in Virginia, Glenn Research Center in Ohio, and Ames Research Center in California would build and test the parts of the hypersonic aircraft.  Dryden Research Center in California, Goddard Space Flight Center in Maryland and Marshall, along with the Kennedy Space Center would engineer the rail track.  The plan calls for an actual two-mile long test track to be laid down parallel to the crawlway that the Shuttle used to be transported along to Launch Pad 39A.  Mr. Starr comments, "I still see Kennedy's core role as a launch and landing facility."

The 10-year plan for the launch platform calls for the program to begin with launching small drones -- like those used by the Air Force -- into orbit.  This would be followed by satellite launches.  If all goes according to plan, the system could eventually be used for low-cost manned mission launches, as well.



Comments     Threshold


This article is over a month old, voting and posting comments is disabled

By magnetrain on 9/23/2010 10:26:52 AM , Rating: 2
This launcher concept is a classic and is doable with the technology that we've had for decades. It's called "Ground Assisted Launch," of which there are various types. Thought I'd reference the work that's been done on it.

First, what's been made. Holloman Air Force Base has a sled test facility ("slippers" on steel rails) that's gone over Mach 8, more than enough to launch a vehicle in scram jet mode.

http://www.airforcetimes.com/news/2008/02/ap_airfo...

http://www.youtube.com/watch?v=qdp4gxfwlv0

Then concept work on applying it.

http://www.g2mil.com/skyramp.htm

Although scram jet speeds has been done, you don't need to go that fast to significantly alter launch technology and costs. Because of the nature of ground assisted launch, just getting the vehicle up to mach 1-2 with large vertical component, you can make Single Stage to Orbit work with current tech (6G's.)

It's interesting to note that this technology is vertical vs. horizontal launch agnostic.

Related technology that's in entrepreneurial stage. High G, low cost launch for bulk materials.

http://www.quicklaunchinc.com/

If we ever get serious about space, the technology is already there.




"This is from the DailyTech.com. It's a science website." -- Rush Limbaugh














botimage
Copyright 2014 DailyTech LLC. - RSS Feed | Advertise | About Us | Ethics | FAQ | Terms, Conditions & Privacy Information | Kristopher Kubicki