backtop


Print 69 comment(s) - last by monkeyman1140.. on Sep 9 at 5:50 PM


2012 Ford Focus Sedan

Ford Transit Connect Electric
Ford gives out some details on the Focus Electric's battery system

Ford is doing its best to stay in the headlines when it comes to the latest in tech. Earlier this week, we brought you news of Ford's efforts to deliver SYNC firmware to new vehicles over Wi-Fi instead of using costly custom-designed hardware.

Today, Ford is spilling the beans on the electric variant of the next generation Ford Focus. Ford is already moving the Focus nameplate up a few rungs from a bargain basement special that is popular with fleet customers to a premium compact, so an electric variant isn't too surprising.

The new Focus Electric will use an advanced lithium-ion battery pack that is [active] liquid cooled to help keep the cells at the perfect operating temperature -- that means cooling the batteries in the hot of summer and heating them in the cold of winter. If you recall, Tesla's CEO called out Nissan for using "primitive" air-cooling on the battery pack used in the Leaf EV. Tesla won't be able to make the same claims against Ford.

“Extreme temperatures impact a battery’s life and performance, making it crucial to have an effective cooling and heating system to regulate temperature for these demanding applications,” said Anand Sankaran, Ford's executive technical leader for Energy Storage and HV Systems.

The active liquid cooling system will also be used to "precondition" the battery pack when charging. The system will automatically bring the batteries to the proper temperature before the charging process begins. If the batteries are already at their optimum temperature, the charging process starts right away.

Ford also announced that the driving range for the Focus Electric will be an impressive 100 miles. The 100-mile figure is identical to that of the Nissan Leaf, but the Focus Electric may have the upper hand in extreme temperatures due to the active cooling system. 

Production of the Focus Electric will begin next year at Ford's Michigan Assembly Plant and the vehicle will be available to the public in late 2011. It should be interesting to see how Ford will price the Focus Electric given the more expensive cooling system that it's decided to strap into the vehicle. Nissan's Leaf EV starts at $32,780 before a $7,500 federal tax credit. On the other hand, Chevrolet's Volt will start at $41,000 before the tax credit. We speculate that the Focus Electric will come in somewhere between those two figures.

The Focus Electric isn't the only all-electric vehicle coming out of Ford -- the Transit Connect Electric commercial van will be available later this year. That vehicle has a driving range of 80 miles.



Comments     Threshold


This article is over a month old, voting and posting comments is disabled

RE: How can this make sense
By Hoser McMoose on 9/4/2010 11:33:31 AM , Rating: 2
I can't speak so much about the batteries in vehicles, but I've done a bit of work with Li-Ion batteries for cell phones and the basic chemistry of it all is the same.

For Li-Ion batteries a typical maximum operating value is at least 60C (140F). Some Li-Ion batteries are rated for higher temperatures. Also you really don't lose much of anything in terms of the battery capacity at high temperatures, though if you need cooling (either for the batteries or for the interior of the car itself) it will be a bigger drain.

Cold temperatures are a bigger problem. Li-Ion batteries start losing efficiency below about 20C and when temperatures drop below 0C their effectiveness drops off pretty badly. At -10C you only get about 70% of the life as compared to 25C+ temperatures and even less if what you're powering has a low-voltage cut-off as the voltage at which that power provided is lower (at 25C+ the voltage stays pretty constant until the battery is nearly dead, at -10C battery voltage is much more of a slope). Below -20C (-4F) Li-Ion batteries are basically worthless.

Aside: Keep in mind that internal combustion engines also lose efficiency pretty badly when temperatures drop below -10C and diesels in particular are extremely problematic below -20C. At the very least they need additives to the fuel to prevent gelling and glow plugs to allow for combustion. Plus you'll need a heavy coat and gloves to drive in one because it takes a LONG time before you're going to get any heat out of the heating system.

The biggest temperature limitation with Li-Ion batteries, and what seems to be the Ford's focus here (no pun intended, honest!) is battery charging . Here you are limited to a much smaller temperature window than actually using the batteries. Typically you can only charge a Li-Ion battery when they are above 0C and below 35 or 40C.

From my reading of this article it seems like this active heating/cooling system is ONLY for charging, so you won't actually be draining the battery at all but rather using electricity while plugged in. Essentially this will result in a drop in the charging efficiency; if you need 10kWh to get a full charge of the batteries you'll need to put in 11 or 12kWh (keeping in mind that Li-Ion batteries charge at better than 95% efficiency under ideal circumstances and 1kWh buys you a *LOT* of heating, though not as much cooling).

If you really want a link for any of this you can try something like:

http://www.panasonic.com/industrial/includes/pdf/P...

Basic specs for a bog-standing Li-Ion battery. There are slight variations between makes and types but the basics are all the same.


"What would I do? I'd shut it down and give the money back to the shareholders." -- Michael Dell, after being asked what to do with Apple Computer in 1997














botimage
Copyright 2014 DailyTech LLC. - RSS Feed | Advertise | About Us | Ethics | FAQ | Terms, Conditions & Privacy Information | Kristopher Kubicki