backtop


Print 68 comment(s) - last by eachus.. on May 6 at 8:33 PM


  (Source: LucasFilm)

Gordon Moore's prediction of doubling transistor counts every 2 years revolutionized the computer industry and his company, Intel.  (Source: New York Times)

An NVIDIA VP is declaring Moore's Law dead and GPUs the only hope for the industry.  (Source: TechCrunch)
In NVIDIA's eye the parallelism of the GPU is the only future for computing

NVIDIA has struggled this time around in the GPU war.  Its first DirectX 11 products were delivered a full seven months after AMD's.  While its new units are at last trickling onto the market and are very powerful, they're also hot, loud, and power hogs.  However, NVIDIA is staking much on the prediction that the computer industry will be ditching traditional architectures and moving towards parallel designs; a movement which it sees its CUDA GPU computing as an ideal solution for.

Intel and NVIDIA have long traded jabs, and Intel's recent failed GPU bid,
Larrabee, does little to warm to the ice.  In a recent op-ed entitled "Life After Moore's Law", published in Forbes, NVIDIA VP Bill Dally attacks the very foundation of Intel's business -- Moore's Law -- declaring it dead.

Moore's Law stemmed from a paper [PDF] published by Gordon Moore 45 years ago this month.  Moore, co-founder of Intel, predicted in the paper that the number of transistors per area on a circuit would double every 2 years (later revised to 18 months).  This prediction was later extend to predict that computing power would roughly double every 18 months, a prediction that became known as Moore's Law.

Now with die shrinks becoming more problematic, NVIDIA is convinced the end is nigh for Moore's Law (and Intel).  Writes Dally:

Moore's paper also contained another prediction that has received far less attention over the years. He projected that the amount of energy consumed by each unit of computing would decrease as the number of transistors increased. This enabled computing performance to scale up while the electrical power consumed remained constant. This power scaling, in addition to transistor scaling, is needed to scale CPU performance.
But in a development that's been largely overlooked, this power scaling has ended. And as a result, the CPU scaling predicted by Moore's Law is now dead. CPU performance no longer doubles every 18 months. And that poses a grave threat to the many industries that rely on the historic growth in computing performance.

Dally says that the only near-term hope for the computer industry now that Moore's Law is "over" is parallel computing -- splitting workloads up among a variety of processors.  However, he derides multi-core efforts by AMD and Intel, stating, "Building a parallel computer by connecting two to 12 conventional CPUs optimized for serial performance, an approach often called multi-core, will not work. This approach is analogous to trying to build an airplane by putting wings on a train. Conventional serial CPUs are simply too heavy (consume too much energy per instruction) to fly on parallel programs and to continue historic scaling of performance."

He concludes, "Let's enable the future of computing to fly--not rumble along on trains with wings."

In other words, he hopes you will buy NVIDIA GPUs and join the "Moore's Law is dead" party.



Comments     Threshold


This article is over a month old, voting and posting comments is disabled

RE: Correct, but...
By gamerk2 on 5/3/2010 4:08:59 PM , Rating: 3
There are three main issues:

1: Threading
2: Multi-processing
3: OS limitations

Threading itself is simple; its only when combined with the next two factors that you get code that doesn't run well in a parallel environment.

Mutli-processing is much tougher, patley because of the underlying OS. In Windows, only one copy of a .DLL exists for every process that runs. [Every process inherits the same Windows.DLL, etc] As such, since every process inherits very low level system DLL's, you have code that at some point will no longer be able to run perfectly parrallel, regardless of how it is coded. [Hence, why I am a proponent of static linking and the return to static DLL's].

You also need to factor in the Windows Scheduler, which tends to keep most processes on one core, simply in order to share some of those repeated low level resources (which in theory, would cut down execution time if the individual tasks were independent of eachother).

Nevermind teh worst thing you can do is start putting lots of threads on lots of cores; taking the GPU as an example, a GPU would be slower in general computing tasks, as each singluar core is far slower then a standard CPU. Its only through parrallelization that GPU's are efficent. [Hence why they do rasterization, which is independent to each indvidual pixel].

Trying to parallelize serial code on an OS that was not designed for a multi-processor environment is a job that is doomed to failure. At some point, M$ is either going to have to re-work Windows with multi-processors in mind, or some other company will have to release a competiting OS.


RE: Correct, but...
By Bcnguy on 5/4/2010 1:01:34 PM , Rating: 2
On the third point. As far as I know MS is working on it at least since 2008 when started a collaborative project for Parallel Computing with the Barcelona Supercomputing Center (BSC-CNS).

http://www.microsoft.com/emea/presscentre/pressrel...


"If a man really wants to make a million dollars, the best way would be to start his own religion." -- Scientology founder L. Ron. Hubbard














botimage
Copyright 2014 DailyTech LLC. - RSS Feed | Advertise | About Us | Ethics | FAQ | Terms, Conditions & Privacy Information | Kristopher Kubicki