backtop


Print 73 comment(s) - last by gfredsen.. on Jul 13 at 9:42 AM


The new solar cells from the University of California, Berkley use nanopillars to create cheap and efficient cells. An optimized cost could cut solar power costs to a third of current levels.  (Source: Ali Javey, UC Berkeley)
New technology may unlock some massive savings

One of the biggest factors in solar power remaining an expensive power source, despite constantly improving efficiencies, is the inherent cost of materials and processing for solar cells made of polysilicon.  Cutting these costs could make the solar power the preferred energy source for mankind, but thus-far there has been little high-performance designs made with cheaper processes or materials.

Now University of California, Berkeley researchers have created a new type of solar cells that may offer exactly that -- lots of solar energy with low processing and materials costs.  The new type of solar cells are composed of tiny nanopillars in a thin film layer atop aluminum foil.  The foil is enclosed in a protective layer of transparent, rubbery polymer.

The total materials costs are quite low, and the production costs, while not fully determined also look promising.  Ali Jarvey, an electrical-engineering and computer-sciences professor who led the work, cheers, "You won't know the cost until you do this using a roll-to-roll process, but if you can do it, the cost could be 10 times less than what's used to make [crystalline] silicon panels."

The cells use a nanofilm of cadmium telluride with uniform 500-nanometer-high pillars of cadmium sulfide laid on top of it.  Other thin-film solar cells with pillars have been made before, says Professor Jarvey, but they have relied on more expensive deposition techniques.  Further, the new cells have an efficiency of 6 percent in transforming sunlight into electricity, where past designs had efficiencies of less than 2 percent.

Silicon-based photovoltaics still have the cell beat in efficiency with 20 percent or more in commercially available designs; however, they are extremely pure, expensive crystalline silicon.  Impurities can cause electrons to get trapped in the semiconductor, so the expensive process of making this high quality crystal material is unavoidable for that design.  Purity is much less of a cost concern in the new design.

Creating an equivalent amount of power would require three times the area (panels) of photovoltaic cells, given their respective efficiencies.  This means that given the cost estimates, solar power costs could be cut to a third of the current levels.

Another key advantage of the new design over traditional photovoltaic panels is flexibility.  Traditional crystalline panels would break if flexed.  The thin film nanopillar cells, though, can be rolled and unrolled with ease.

The new design essentially divides silicon's responsibilities.  The thin film material absorbs light and generates electrons, while the pillars conduct the electrons to the circuit and help to trap light.  As electrons have a shorter distance to travel to reach the pillars they're less likely to get trapped by defects, and thus crystal quality is less of a concern.

Currently the cells are produced using a relatively cost-effective anodizing design to grow the pillars on a thin aluminum foil film, the bottom electrode.  The thin semiconductor film is then layered over the pillars and a top electrode of copper and gold is layered thinly to complete the circuit. 

Two key areas of improvement are the top film and the production process.  Adopting a roll-to-roll production system could speed up the assembly and make it cheaper.  Also, currently the gold only allows half the sunlight to enter the cell as its semi-opaque.  Replacing the gold with a transparent material like indium oxide could double the efficiency to 12 percent or more, while not significantly impacting the cost of materials.

States Professor Yang, "(The) architecture is most important--materials we can continue working on. The beauty of this paper is the demonstration of how well the architecture works."

The research appears in this month's edition of the journal Nature Materials.



Comments     Threshold


This article is over a month old, voting and posting comments is disabled

RE: Can I roll this thing
By Shadowself on 7/7/2009 10:28:26 AM , Rating: 3
Leading silicon based solar cells get up to 20% (and sometimes better) efficiency. GaAs and multiple junction cells are getting into the mid 30% efficiencies (though their prices are higher than simple silicon ones).

A 6% efficiency has a long way to go. Even a jump to 12% is not that great.

While it may be feasible in certain climates to use this material as a roof covering (think of areas where hail, microbursts, etc. are very rare). I can't imagine using any solar array as a full roof covering until it becomes more "bullet proof".

Modern asphalt shingles (and even more so, tile and asphalt looking steel shingles) are quite resistant to most hazards. Besides getting the efficiencies up, these materials will have to significantly increase their physical robustness.

As for covering your southern (and maybe eastern & western) faces of your house -- I can't imagine the average homeowner covering their "lovely home" with solar cells even if it saved them $1,000 a year.


RE: Can I roll this thing
By mdogs444 on 7/7/2009 11:01:27 AM , Rating: 2
quote:
I can't imagine the average homeowner covering their "lovely home" with solar cells even if it saved them $1,000 a year.

Heck no, I wouldn't cover my roof with that stuff...nor will I bow to the governments wishes of painting my entire roof white.

Obviously, those are personal preferneces. But I think the reason most people wont invest in these things are the same reason they don't feel the need to sell their current cars to buy a hybrid. The length of time your going to keep the car, factored in with the higher cost difference between the non-hybrid version, the total out of pocket costs to obtain the car, and possibly any loss you take on the current car...it just doesn't make sense to put yourself through that financial mess to save 10-15mpg's to "feel good".


RE: Can I roll this thing
By randomposter on 7/7/2009 11:17:23 AM , Rating: 2
So your argument is an economic one. Fair enough. So how much does a can of white paint (for your roof) cost?


RE: Can I roll this thing
By djcameron on 7/7/2009 12:17:22 PM , Rating: 2
But then you'd have to paint your roof black in the winter, right?


RE: Can I roll this thing
By lagomorpha on 7/7/2009 2:51:00 PM , Rating: 3
A black cover that rolls up doesn't sound that difficult to implement...


RE: Can I roll this thing
By Boze on 7/7/2009 7:22:36 PM , Rating: 2
Actually, even if I had a 10,000 square foot home, I'd love to cover it with extremely high efficiency solar cells. There's something about the thought of making everyone else pay for electricity that I get free from the Sun that makes me smile.

I wish some ridiculously advanced new technology could be developed in the next few years that gave the cells a near 99% efficiency and could be produced at a cost of say, $1 per square foot or so... pipe dreams for now I guess. :)


RE: Can I roll this thing
By BeagleFury on 7/10/2009 9:20:03 PM , Rating: 2
We get 4Hr sunlight per day here in NH.

At 6% efficiency, my south facing front roof, covered in solar shingles having this technology, would generate about 350 KWHr per month.

Our electricity costs about 13 cents per KWHr. We pay about $710 for our electricity per year.

Asphalt roof lasts about 15-17 years, costs me about $3000 to replace the front facing roof area.

I estimate a solar roof over the same area using an aluminum base with this technology at 1/3 silicon panel prices would be about $10000 installed.

I am confident they could make this last 30 years.

So, instead of paying $880 per year for my asphalt roof and electricity...

I pay $510 per year for my metal solar roof and electricity.

Seems like a pretty good idea. I save $400 per year. If I'm really worried about hail damage, microbursts, etc. taking out the entire roof, I think I could probably get insurance coverage for under $200 per year. Still save $100 per year over long term.


RE: Can I roll this thing
By MrPoletski on 7/13/2009 6:08:33 AM , Rating: 2
.... and you'll never have another brownout...


"It looks like the iPhone 4 might be their Vista, and I'm okay with that." -- Microsoft COO Kevin Turner














botimage
Copyright 2014 DailyTech LLC. - RSS Feed | Advertise | About Us | Ethics | FAQ | Terms, Conditions & Privacy Information | Kristopher Kubicki