Print 44 comment(s) - last by MrPoletski.. on May 27 at 6:32 AM

Ionic Cooling at Work  (Source: MIT Review)
Ionic cooling technology expected to be commercialized next year

Before Sharper Image went defunct, the company pushed its Ionic Breeze air purifier relentlessly through commercials. The big selling point of the product was that it used charged particles to move air without the need for a fan or other moving parts.

MIT Review reports that some researchers are using the same idea for cooling laptops and other electronic devices. Researchers from the University of Washington and a company called Tessera that has licensed the ionic-cooling technology from the university are working on adapting the power of ionic cooling to use in notebook computers.

According to the researchers, the ionic-cooling methods can extract about 30% more heat from a laptop than a traditional fan. In addition to removing more heat form hot internal components like the CPU, lab tests have also reportedly shown that the ionic-cooling method consumes about half the power a fan needs. Any power savings realized in a notebook computer directly increases the run time of the machine.

The ionic-cooler is based on research originally completed by Alexander Mamishev from Washington University. The tech was licensed by Tessera last year and researchers at the university and Tessera have been working to convert the technology into a smaller form that can be used inside electronics devices like notebooks, game consoles, projectors, and servers.

Tessera director of research and development Ken Horner said, "The early work focused on principles. We're now focused on optimizing it and fitting it into small form factors."

MIT Review reports that the ionic cooler developed by Tessera would sit near a vent inside a laptop. Heat pipes would be used to draw heat away from the heat generating components inside a computer and pull the heat towards the ionic-cooling system.

The ionic-cooler itself consists of a pair of electrodes, one of which is an emitter and the other a collector electrode. When voltage is applied between the two electrodes, ions flow from the emitter to the collector pushing neutral air molecules across a hot spot.

One of the biggest challenges for the technology was to create a very small voltage converter that could generate the needed 3,000 volts to power the ionic system. The 3,000 volts of power had to be generated from the notebook's 12v DC power supply.

Engineers were able to devise a suitable power supply that measures only 3 centimeters square from the power supply for a cold cathode fluorescent lamp. A problem still facing the researchers is one of dust. The technology has to be made as impervious to dust as current fans are. The ionic cooling device also has to be made more rugged.

The lifespan of the electrodes is currently not up to the 30,000 hours of life expected from a notebook computer. The researchers are reportedly working with new electrode materials now that are expected to solve the longevity issues with early electrodes. The researchers declined to give specifics on the materials being used due to patents that are pending on the technology.

Exactly how much cost an ionic-cooling system would add to a notebook is unknown at this point. Tessera's Craig Mitchell says that the technology will be ready for commercialization next year and that the cost of the cooler would be in the ballpark of where it needs to be.

Better methods of cooling the internals of computers will be needed for new technologies like the graphene multiplier to come to market with the potential to push CPU speeds higher.

Comments     Threshold

This article is over a month old, voting and posting comments is disabled

RE: No thanks
By mindless1 on 5/21/2009 5:59:02 PM , Rating: 5
The issue of moving parts, ie - fans, is not much of a problem in computers, the problem is they pinch pennies far too much.

A decent fan will outlast a notebook or desktop's other components. Problem is, they instead use thin, poorly balanced, excessively small, high RPM fans with cheap bearings, then they make the heatsink cheaply too. While ionic cooling could remove the problems, it would do so at a higher expense, an expense which would also solve the problems using existing tech.

In very small notebooks there is the issue of fan size versus turbulence still, it can't help but produce some audible noise but even using a relatively cheap cooling subsystem many laptops are reasonably quiet.

Overall this is a bad idea, it is already known that LCD inverters are one of the more likely early failure points in a laptop (besides physical stress like dropping it or knocking the power cord and socket loose), adding a second such board will be even worse.

If it's not broke don't fix it, high quality fans, even being mechanical, are superior except for a slight size and noise difference. Going passive seems good, till you realize a further size and weight tradeoff if not performance as well.

I'm not suggesting ionic cooling won't have suitable applications but rather a generic concept of replacing fans in typical consumer laptops would not be the solution to existing problems without creating new, more significant problems, plus it's pretty much nonsense what they suggested about a significant reduction in power consumption, the typical laptop fan averages under 100mA current, contrasted by a couple dozen times more by a laptop running at high enough power level to get the fan current average as high as a mere 100mA. The fans may have a label stating more than 100mA, then there's the average versus peak current, then there's the fan control circuit which seldom makes it run at high speed.

RE: No thanks
By SiliconAddict on 5/24/2009 12:25:55 AM , Rating: 2
Umm I beg to differ. I do laptop repair work and I've lost count the number of heatsink and fans I've had to replace because they have been clogged up by dust and debris. The reality is that with the fan its one big ass filter in there. And like it or not fans are moving components and as such is a major point of failure. The fewer moving parts we have in a computer the more reliable they become.

RE: No thanks
By mindless1 on 5/26/2009 12:43:57 AM , Rating: 2
Like I wrote, they pinch pennies on the design/parts, but when you talk about clogging you are talking about insufficient cleaning interval for the environment.

If dust were to clog a fan which by virtue of having moving parts, tends to break up large clumps of dust, given same necessary airflow rate for cooling, the ionic cooler will clog sooner, plus the ions charge the dust so it sticks to things even more.

I agree that in many cases moving parts are a liability for lifespan of the entire system, but at the same time it is true that many of us have fans that have lasted over 10 years which is substantially longer than the typical laptop does with regular use.

Fans also don't tend to break easily merely due to dust and debris, I may have mentioned a few factors in fan longevity like airflow per RPM by increasing the size, then there's a thickness enough that it uses quality dual ball bearings.

As I already wrote, the average lifespan of the invertor boards they're already using in laptops and LCD monitors is shorter than that of a quality fan, with them planning on placing either more load on existing inverter boards or doubling up to have two of them per laptop instead of one, doubling the failure potential of one of the shortest lived parts.

I agree fans are a common failure point in laptops, but you didn't see that I meant the solution is not to replace them with another problematic tech, it's to replace them with high quality design and parts in the fan based cooling subsystem.

A good fan at low RPM may last over 30 years with modern synthetic lubricants that don't harden like old dino lubricants do.

"If a man really wants to make a million dollars, the best way would be to start his own religion." -- Scientology founder L. Ron. Hubbard
Related Articles

Copyright 2016 DailyTech LLC. - RSS Feed | Advertise | About Us | Ethics | FAQ | Terms, Conditions & Privacy Information | Kristopher Kubicki