backtop


Print 99 comment(s) - last by sdoorex.. on Mar 23 at 1:33 PM


Iron phosphate  (Source: MIT)
The new battery isn't ready for commercial development, but it shows great promise

A new battery material created by researchers from the Massachusetts Institute of Technology (MIT) could lead to much faster recharge times for batteries.

MIT professor Gerbrand Ceder and researcher Byoungwoo Kang said the material can discharge energy and recharge nearly 100 times faster than batteries currently used in mobile phones.  Lithium-ion batteries are widely used in laptops as well, and could allow longer battery life and faster recharge time if a user is away from a power source for long durations of time.

"The ability to charge and discharge batteries in a matter of seconds rather than hours may open up new technological applications and induce lifestyle changes," Ceder and Kang sad in the latest edition of Nature.

The duo created a small battery that normally takes six minutes to charge, but used their new traffic flow to recharge the same battery in just 10 to 20 seconds.

It was widely believed the ions and electrons inside the battery moved too slowly, but the researchers noticed that wasn't the case.  They focused on how ions enter nano-scale tunnels aimed at moving electrons around the battery, and eventually created a lithium phosphate coating that helps push ions to the nano-scale tunnels.

Rechargeable lithium batteries used today have the ability to store high amounts of energy, but don't normally release that power, so they discharge very slowly.    

The battery has been supported with federal research money, and two companies have already licensed the technology, MIT announced.  It'd be possible to start mass producing the batteries in two to three years, the MIT researchers said. 



Comments     Threshold


This article is over a month old, voting and posting comments is disabled

RE: dangerous?
By MrPoletski on 3/16/2009 7:04:31 AM , Rating: 2
Nothing produces energy.

energy can neither be created nor destroyed, only changed from one form to another.

Both a bomb and a battery convert chemical potential energy to something else.

A battery converts it to electric charge in a controlled manner. The more charge there is present, the slower the charge producing reaction occurs until it outputs its maximum voltage. A kind of negative feedback because as you draw charge out of the battery, the chemical reactions will accelerate to replace the lost charge. Outstrip it's a bility to generate more charge and you will current limit causing the votlage to drop.

A bomb, on the other hand, converts chemical potential energy to heat and it does so in a positive feedback manner. I.e. the hotter this chemical reaction gets, the faster the reaction occurs. The reaction itself producing heat. You end up with a runaway situation that is constantly accelerating until all the fuel is spent. Typically with concentional explosives this chemical reaction is simply combustion, often with an oxygen rich compound rather than air itself (an oxidising agent).


RE: dangerous?
By MrPoletski on 3/16/2009 12:14:46 PM , Rating: 2
as an addition..

A nuclear bomb converts nuclear binding energy into EM radiation (which is then subsequently absorbed by the surroundings to produce heat). This occurs in a chain reaction, this is not the same as the positive feedback situation inside a chemical explosive but very similar. The EM radiation produced by nuclear fission does not speed up the reaction process (and if anything might slow it slightly) but the increase in high energy free nuetrons DOES cause the chance of a fission reaction accuring to increase. Being as more free neutrons are produced by a fission reaction than required for it to occur (1 required, 3 produced, typically) this will effectively be a positive feedback situation.

Nuclear Fusion is different, the heat generated (again starts as EM and is absorbed) will increase the plasma temperature and hence the mean speed of the H ions meaning a collision (and hence fusion) is more likely.

Both these reactions are far easier to moderate than a chemical explosion, however. Free neutrons are often controlled by boron rods inserted into the reactor. In Fusion you can control the reaction by controlling the temperature and containment/pressure.

The only reason increased temperature might inhibit a fission reaction is by a detrimental affect on the correct moderation of the neutrons. This only really applies to a reactor, rather than a bomb as the fissile material is far elss dense. At the end of the day, the neutrons have to be within a certain speed range for the maximum chance of a fission interaction. The moderators inside a nuclear plant actually slow the neutrons down. More heat could hinder this, tbh you're more likely to have meltdown before anything significantly different manifests though.


"Young lady, in this house we obey the laws of thermodynamics!" -- Homer Simpson











botimage
Copyright 2014 DailyTech LLC. - RSS Feed | Advertise | About Us | Ethics | FAQ | Terms, Conditions & Privacy Information | Kristopher Kubicki