backtop


Print 99 comment(s) - last by sdoorex.. on Mar 23 at 1:33 PM


Iron phosphate  (Source: MIT)
The new battery isn't ready for commercial development, but it shows great promise

A new battery material created by researchers from the Massachusetts Institute of Technology (MIT) could lead to much faster recharge times for batteries.

MIT professor Gerbrand Ceder and researcher Byoungwoo Kang said the material can discharge energy and recharge nearly 100 times faster than batteries currently used in mobile phones.  Lithium-ion batteries are widely used in laptops as well, and could allow longer battery life and faster recharge time if a user is away from a power source for long durations of time.

"The ability to charge and discharge batteries in a matter of seconds rather than hours may open up new technological applications and induce lifestyle changes," Ceder and Kang sad in the latest edition of Nature.

The duo created a small battery that normally takes six minutes to charge, but used their new traffic flow to recharge the same battery in just 10 to 20 seconds.

It was widely believed the ions and electrons inside the battery moved too slowly, but the researchers noticed that wasn't the case.  They focused on how ions enter nano-scale tunnels aimed at moving electrons around the battery, and eventually created a lithium phosphate coating that helps push ions to the nano-scale tunnels.

Rechargeable lithium batteries used today have the ability to store high amounts of energy, but don't normally release that power, so they discharge very slowly.    

The battery has been supported with federal research money, and two companies have already licensed the technology, MIT announced.  It'd be possible to start mass producing the batteries in two to three years, the MIT researchers said. 



Comments     Threshold


This article is over a month old, voting and posting comments is disabled

RE: Good
By Integral9 on 3/13/2009 9:43:11 AM , Rating: 2
Ok, but your battery is probably only producing somewhere near 12volts, not 120. So I think you need to produce 240A @ 12 volts. Which shouldn't be that hard to do from a standard wall outlet. The problem I think is going to be providing enough "bandwidth" for the Amps to flow through. You need a pretty wide path to get 240A @ only 12V.


RE: Good
By emboss on 3/13/2009 10:59:34 AM , Rating: 2
Guspaz is correct. He's simply using the 80 Wh battery capacity (voltage doesn't matter), and calculating how much power would be needed to recharge that in 10 seconds = 10/3600 hours. Simply dividing 80 Wh by (10/3600) hours gives 28800 W of power for 10 seconds. Regardless of the voltage anywhere.

However, you've got 120 V at the wall, so to pull 28.8 kW out of the wall socket you're going to need 28.8 kW / 120 V = 240 A. Note that this assumes no losses anywhere between the socket and the battery, whereas in real life these would be significant (requiring more than 240 A from the socket).


RE: Good
By Integral9 on 3/13/2009 1:08:55 PM , Rating: 2
quote:
(voltage doesn't matter)
Ahh. Thanks. I guess what I was trying to say was that you could take advantage of a voltage drop to produce more current. It would take longer to charge the battery, but at least you wouldn't have to decide between running your house or charging a battery in 10 sec.


RE: Good
By mindless1 on 3/14/2009 12:47:34 AM , Rating: 2
Ok, but it still wouldn't work. 12V*240A=2880W. 2880W/120V=24A. 24A*90% Switching PSU Efficiency = 27A. A typical household AC outlet is only rated for 15A.

Granted, you could wire up a different outlet.


RE: Good
By MrPoletski on 3/16/2009 7:16:26 AM , Rating: 2
I don't see any reason why these 12v batteries cannot be hooked up in series for charging, so you can shunt 240v into 20 cells at once. (12v each)


"Nowadays, security guys break the Mac every single day. Every single day, they come out with a total exploit, your machine can be taken over totally. I dare anybody to do that once a month on the Windows machine." -- Bill Gates











botimage
Copyright 2014 DailyTech LLC. - RSS Feed | Advertise | About Us | Ethics | FAQ | Terms, Conditions & Privacy Information | Kristopher Kubicki