Print 63 comment(s) - last by MisterChristop.. on Feb 19 at 9:49 AM

Drilling has begun on a massive $84M USD U.S. Department of Energy carbon sequestration project. The project and other sequestration efforts have many critics, including the IPCC and utilities, two rivals which typically disagree on climate issues but in this case are in agreement.  (Source: Wired)

The DoE project drills deeper than past U.S. sequestration projects, into sandstone of Mt. Simon, shown here. The reservoir along with similar ones in other parts of Kentucky, Indiana, and Illinois could store up to 100 billion metric tons of carbon dioxide.  (Source: Wired)
Why worry about your problems, when you can bury them away?

As the U.S. Department of Energy's first-of-its-scale project in carbon burial launches, interest in carbon burial and sequestration is at an all time high.  Many nations wish that there was an alternative to traditional emissions cuts, which can hinder growth, and could reduce their net contribution to atmospheric carbon.

Carbon sequestration could provide just such a solution.  By burying the substance in underground cavities or in carbon rich soils in swamps or other sites, the net contribution of a country to emissions can be reduced.  And while many in the environmental community no longer like the idea, pointing out that such deposits could be easily released and don't solve the overall problem, the movement to adopt carbon sequestration still has powerful supporters.

Drilling began this week in Illinois on the DoE project, which will bury one million metric tons of carbon dioxide into the ground by 2012.  The project is the first of its scale in the U.S., and while still small compared to total U.S. emissions has the potential to grow much bigger.  Illinois, Indiana, and Kentucky have enough underground space to store approximately 100 billion tons of CO2, enough to completely negate 25 years of emissions at the current rate, if fully filled.

Robert Finley, the manager of the current project states, "This is going to be a large-scale injection of 1 million metric tons, one of the largest injections to date in the U.S."

While Mr. Finley is enthusiastic about the project, others aren't.  The Bush administration last year canceled funding for an even bigger carbon sequestration project, FutureGen, citing concerns about the practice.  The Intergovernmental Panel on Climate Change, typically a strong voice in support of emissions control, has sided with the utilities for once in vocally opposing carbon burial.  It has released studies indicating 30 percent of the energy from a coal burning plant would be wasted trying to capture the carbon dioxide from the flue gas.

One thing that could give supporters of burial a boost though is new carbon-specific filtering materials produced in labs like Omar Yaghi's at UCLA and at Georgia Tech under Chris Jones.  These materials may potentially make capture much cheaper and more efficient, making storage the only remaining challenge.

John Litynski, who works in the fossil-fuel-centered National Energy Technology Laboratory's Sequestration Division, believes storage should be easy as pie for the U.S.  He states, "What we found in the U.S. with the research that we've done over the last 10 years is that there is a significant potential to store CO2 ... in these very large reservoirs that are underground."

However, many of these reservoirs are deeper underground that existing sequestration projects have reached.  That's why the deep reaching Illinois project, which drills into the Mt. Simon sandstone, is such a critical test bed.  Scientists will, for the first time, be able to observe what happens when they pump compressed carbon dioxide 6,500 feet below the surface.  Describes Mr. Litynski, "We have numbers for what we think the capacity is in the U.S., but the only way to prove that is to actually drill a well."

The Illinois project will pump carbon dioxide produced by ethanol fermentation underground.  Archer Daniels Midland provided land for the site.  Even with these concessions, the project will cost over $84M USD, thanks to the high cost of drilling.

At a recent speech Mr. Litynski was challenged by an audience member who pointed out that 10,000 projects of the scale of the Illinois one would be needed to offset current emissions.  Mr. Litynski refused to back down from his support of the concept, though, dodging the question and stating, "From my point of view as someone working in this field ... the political rhetoric gets to the point where it's all supposed to be solar or wind or coal or natural gas (versus sequestration).  The reality for the situation is that we need all of these technologies."

Comments     Threshold

This article is over a month old, voting and posting comments is disabled

RE: Disagree
By Adul on 2/17/2009 3:54:09 PM , Rating: 0
there is only so much nuclear material that is available. Much like oil its a finite resource

RE: Disagree
By freeagle on 2/17/2009 4:10:52 PM , Rating: 2
But much more abundant. You probably won't find oil in the space...

RE: Disagree
By kattanna on 2/17/2009 4:20:11 PM , Rating: 4
You probably won't find oil in the space...


13 February 2008 Saturn’s orange moon Titan has hundreds of times more liquid hydrocarbons than all the known oil and natural gas reserves on Earth, according to new Cassini data.

RE: Disagree
By freeagle on 2/17/2009 4:26:57 PM , Rating: 2
methane and ethane, the oil we dig is made C5+ hydrocarbons

RE: Disagree
By FaceMaster on 2/17/2009 4:36:02 PM , Rating: 2
methane and ethane

These are also useful.

I don't know how useful the burying of this stuff will be, but I'd like to see the size of the grave stone!

RE: Disagree
By mindless1 on 2/17/2009 9:00:46 PM , Rating: 2
Hardly, considering their location. Make use a tanker rocket ship that runs on it and then we can at least refuel there for the trip back home.

RE: Disagree
By SectionEight on 2/17/2009 4:37:35 PM , Rating: 2
Well, if our space explorations find microbes on Mars, that coupled with the strong suggestions of hydrodynamic and sedimentary processes at some point in the past would create some potential to form oil there.

RE: Disagree
By icanhascpu on 2/17/2009 11:19:50 PM , Rating: 2
Last time I checked, Earth was in space.

RE: Disagree
By A Stoner on 2/17/2009 4:26:45 PM , Rating: 5
Libtard thinking ...
there is only so much nuclear material that is available. Much like oil its a finite resource
stand back, it's going to blow.

From the next big future:
The total abundance of Uranium in the Earth's crust is estimated to be approximately 40 trillion tonnes. The Rossing mine in Nambia mines Uranium at an Ore concentration of 300 ppm at an energy cost 500 times less than the energy it delivers with current thermal-spectrum reactors. If the energy cost increases in inverse proportion to the Ore concentration, shales and phosphates, with a Uranium abundance of 10 - 20 ppm, could be mined with an energy gain of 16 - 32. If deep burn reactors are developed and used where all of the nuclear fuel is used then 20 times more power would be generated from the same amount of metal.

If all of the 2 ppm fuel was able to be mined for higher energy return then the energy cost of mining then about 20 trillion tons is accessible. And then about quadruple that by including thorium. The earth's crust has 6 ppm of Thorium and 2 ppm of Uranium. Some deep burn reactor approaches such as fusion/fission hybrids do not require any enrichment. Any uranium is usable not just uranium 235.

80 trillion tons times 950 gigawatt days/ton times 24 billion watt/hours per GWd.
1750 billion trillion kilowatthours.

World net electricity generation nearly doubles in the IEO2008 reference case, from about 17.3 trillion kilowatthours in 2005 to 24.4 trillion kilowatts in 2015 and 33.3 trillion kilowatthours in 2030.

100 times current world electricity usage for 1 billion years.

Advanced nuclear (deep burn 99.9% usage of fuel) can last for billions of years at 100 times the energy usage rate we have now.

RE: Disagree
By Bateluer on 2/17/2009 4:34:22 PM , Rating: 3

RE: Disagree
By Choppedliver on 2/17/2009 8:16:24 PM , Rating: 5
Wow I hope 1 billion years gives us enough time to make solar and wind viable alternatives! :D

Oh and I hope duke nukem forever comes out too

RE: Disagree
By MozeeToby on 2/17/2009 5:25:41 PM , Rating: 3
3 parts per billion of sea water is uranium. That is almost 1000 times what is believed viable in the crust and it has been show to be economically feasible to extract it (not yet, but when the mined uranium gets more expensive).

Finite? yes.
Gonna last a hell of a long time? Yes.

"There is a single light of science, and to brighten it anywhere is to brighten it everywhere." -- Isaac Asimov

Copyright 2016 DailyTech LLC. - RSS Feed | Advertise | About Us | Ethics | FAQ | Terms, Conditions & Privacy Information | Kristopher Kubicki