backtop


Print 55 comment(s) - last by luhar.. on Dec 15 at 1:23 PM


MIT chemistry professor Daniel Nocera has devised a novel way of storing solar power using inexpensive materials. He says its the first step to creating a hydrogen generating synthetic "plant", critics say his claims are overstated.   (Source: Christopher Harting )

Professor Nocera imagines a system where solar panels or articial leaves collect solar energy and turn it tinto electricity. From there his catalyst would use the electricity to split water, forming hydrogen fuel.  (Source: Bryan Christie )

Professor Nocera's novel system for hydrogen generation uses cobalt, an inexpensive catalyst previously dismissed due to its high solubility.  (Source: Bryan Christie )
Is Professor Nocera's solar brew a savior or a wishful thinking?

Solar power's efficiency is advancing at a steady rate, and with improvement such as concentrated cells and novel materials the question is not so much if solar can be cheaper than coal power someday, but rather when.  However, when this scenario does eventually arise, solar faces some remaining challenges, the most significant of which is the intermittent nature of the power source. 

In short, without something to store solar power efficiently, it’s infeasible as a primary electric power source.

Batteries and ultracapacitors are frequently discussed as possible means of solar power storage, but they are very expensive.  Other novel storage methods have also been explored, but they seem uncertain prospects at best.  Some scientists point out that there is already a system that takes solar power and stores it -- photosynthesis in plants.

When it comes to imitating nature's hydrogen producing system (remember, sugar is only the secondary product of photosynthesis, driven by the production of the primary product -- hydrogen ions -- from using sunlight's energy to split water), many scientists have tried.  However, the electrocatalysts needed to split water into hydrogen and oxygen are typically even more pricey than batteries.  However, one MIT professor has discovered a possible alternative using cheap materials that he says may help keep the dream of solar power (and solar storage) alive.

Daniel Nocera PhD, a professor of chemistry at MIT, devised a catalyst system using strips of cobalt, nickel, and phosphate, all relatively inexpensive chemical compounds.  By eschewing expensive catalysts like platinum, the cost of the system is kept low.  So why didn't others think of this efficient system?  Well, he says that it is commonly known that cobalt dissolves relatively easy in water, making it typically a poor electrode material, and typically earning it a quick dismissal.  To remedy this, Professor Nocera chose a somewhat creative approach, instead adding dissolved cobalt directly to the solvent and relying on a thin cobalt film which formed on the electrode.

The success of the result surprised even its creator.  He describes, "Here's the luck.  There was no reason for us to expect that just plain cobalt with phosphate, versus cobalt being tied up in one of our complexes, would work this well. I couldn't have predicted it. The stuff that was falling out of the compounds turned out to be what we needed."

Now he is looking to improve upon his lucky break.  He states, "Now we want to understand it.  I want to know why the hell cobalt in this thin film is so active. I may be able to improve it or use a different metal that's better."

However, he also wants to move towards a production system.  He states, confidently, "We were really interested in the basic science. Can we make a catalyst that works efficiently under the conditions of photosynthesis?  The answer now is yes, we can do that. Now we've really got to get to the technology of designing a cell. "

Some are skeptical about Professor Nocera's big claims.  They say that his system is cheap and promising in some respects, but that he is overstating its potential for commercial scale hydrogen production.  By an important metric, the peak efficiency current density (the higher this number, the faster the rate of hydrolysis), his best reported result of 10 milliamps per square centimeter is only a hundredth of the current commercial electrolyzer rate of 1000 milliamps per square centimeter.

Even one of his teachers is taking issue to Professor Nocera's alleged hyperbole; Thomas Meyer, who has been a mentor to Nocera, states, "The claim that this is the answer for artificial photosynthesis is crazy.  [This] could prove technologically important [as a] research finding, [but]  there's no guarantee that it can be scaled up or even made practical."

John Turner, a research fellow at the National Renewable Energy Laboratory in Golden, CO, adds, "At least what he's published so far would never work for a commercial electrolyzer, where the current density is 800 times to 2,000 times greater."

While some say he is wasting his time and should refocus on batteries, Professor Nocera continues his research and his big talk.  He's teaming up with Professor Michael Grätzel of the  École Polytechnique Fédérale in Lausanne, Switzerland to make a full solar cell and catalyst system which produces hydrogen.  Professor Grätzel invented a unique dye that gives off electrons when exposed to sunlight.  Professor Nocera hopes to merge the two inventions to create an artificial, fuel-generating leaf, what he sees as the future of electric power generation.

One thing's for sure -- Professor Nocera's work and rhetoric will likely continue to draw rebukes from colleagues, but it’s hard to argue the temptation of emulating nature's most successful energy fixing design and storing power by a simple equation -- "sun + water = fuel".



Comments     Threshold


This article is over a month old, voting and posting comments is disabled

Its a great scenario
By Floorbit on 11/25/2008 9:55:33 AM , Rating: 2
I saw this type of schematic in a set of inventions encyclopias purchased in the early 90s. Its not 'how'he does what he does that I wish to comment on. But 'what'he does and as to the schematic showing the hybrid vehicle there.
Most of the equipment is already available to utilize. The question of using 'hydrogen'- its storage. Is also a good 'how'question. With plenty of implementable answers.
If you look at the technic of the 'writing'of this story. Its ideal is to premise that this is not feasible since it is not 'commercially'acheivable. Well the conflict is not there. Since it does not have to be done whole,as a totally monolistic entity.
Its consideration of feasable,would probably share more integrity if it was considered at the very least habitable unit scale.
Then for color,you could look at the situation between the early electrical systems AC-DC etc.The tumult there from patent problems to financial meltdowns. Little said of course of the new technology to be the cause. However you do not especially see big names such as 'GE'putting your roof on for example. The science is there but it is not practicle to them given their structure of present manufacturing asset.
This is a really 'good'idea. Those that truly know about it,are getting a little shaky to let loose of some conventional risk. To consider the potential of this one.
Im thinking for myself here. And this is a type of system that is in and of itself a 'new resource'. Where certainly the positives out weigh the negatives. Even for the most conservative of us.
This type of design deserves our support. When the 'how'of its schematic only improves on the designs future implementation. With what can be implemented at present.




RE: Its a great scenario
By mmcdonalataocdotgov on 11/25/2008 12:59:27 PM , Rating: 2
Egads, what language was that you were writing in?


"What would I do? I'd shut it down and give the money back to the shareholders." -- Michael Dell, after being asked what to do with Apple Computer in 1997














botimage
Copyright 2014 DailyTech LLC. - RSS Feed | Advertise | About Us | Ethics | FAQ | Terms, Conditions & Privacy Information | Kristopher Kubicki