backtop


Print 98 comment(s) - last by mixpix.. on Apr 12 at 2:21 AM


Cern's grid network connects computers and research stations and unheard of speeds, by implementing a brand new high-tech network with no legacy components.  (Source: University of Victoria)
Internet up to 10,000 times faster deployed, may see consumer use within a year or two

CERN, the Geneva-based particle physics center which spawned the world wide web in 1989, is looking to create the next internet, and has already laid down the essential ground work for it.  Experts say it is sorely needed.  Recent industry analysis, such as DailyTech's recent piece "American Broadband: Pathetic and Disgraceful," has revealed that most customer languish under poor data rates and high costs.

The new internet from CERN could change all that.  The proposed system averages speeds of up to 10,000 times the typical broadband connection today.  The new internet is known as "the grid" and could send the entire Rolling Stones catalog from Britain to Japan in two seconds, a scenario akin to the RIAA's worst nightmare

Among the fields the new internet may revolutionize are online gaming, holographic image transmission, and HD video telephony.  Under the new internet you would be able to complete a high definition video telephony call for the price of a normal call on a land line.

David Britton, professor of physics at Glasgow University says that the grid will surpass many peoples current conceptions of the internet.  He states, "With this kind of computing power, future generations will have the ability to collaborate and communicate in ways older people like me cannot even imagine."

After years of work the grid is coming online this summer on what is termed the "red button day".  The new network will help to transmit the massive data load from CERN's new Large Hadron Collider (LHC).

The LHC designed to probe some of the most complex mysteries of the physics world is a prime example of research application, which would be impossible without the grid.  The LHC creates an amount of data equivalent to the content of 56 million CDs annually -- or a little more than 36 petabytes per year.  If the data demands were steady this would equate to almost two CDs per second, but unsteady demand leads to a need for the ability to transmit dozens or more CDs worth of data in a second.

The demands of the LHC meant that the CERN scientists could not use the traditional internet, created by CERN researcher Sir Tim Berners-Lee, for fear of a worldwide collapse.  The current internet, a hodge-podge of high speed equipment and older equipment originally designed to work with telephone calls, simply is not robust enough to handle the capacity needed for the LHC or other potential future internet applications.

The grid, on the other hand, has been built from the ground up to a high tech standard.  It utilizes almost entirely fiber optics and has numerous cutting-edge routing centers.  The new network will not be slowed by outdated components.  The new grid already has 55,000 servers, and this is expected to rise to 200,000 within two years.

Professor Tony Doyle, technical director of the grid project explains the need for it, stating, "We need so much processing power, there would even be an issue about getting enough electricity to run the computers if they were all at CERN. The only answer was a new network powerful enough to send the data instantly to research centres in other countries."

The new "parallel internet" runs along fiber optic lines from CERN to 11 research locations in the United States, Canada, the Far East, Europe and around the world.  Each of these 11 locations radiates out to other academic locations, using existing academic high-speed networks.  In Britain, 8,000 servers are current online and it is projected that by the fall a student at any university could connect to the grid rather than the traditional internet.

Ian Bird, project leader for CERN's high-speed computing project, believes that the grid will make desktop data storage obsolete.  With the incredible speeds and data rates, it is only a matter of time, he says, before people entrust all their information to the internet.  Says Bird, "It will lead to what’s known as cloud computing, where people keep all their information online and access it from anywhere."

By using its blazing speed, the grid can leverage the power of thousands of connected computers, when challenged with a particularly tough task.  Researchers hope the new power will allow the LHC to detect a Higgs boson, an elusive never-before seen theoretical particle, which is supposed to be what gives matter mass.  The LHC will only be able to detect a few thousand particles a year and will need to leverage the grid's full power to analyze these particles in coming years.

It is uncertain whether the grid will branch into a domestic network, or whether business will elect to build their own similar networks.  Some telecom providers and businesses are beginning to implement one of the grid's most powerful features, so-called dynamic switching.  Dynamic switching gives the user a dedicated channel during a particularly big task.  This can allow a movie to be downloaded in 5 seconds instead of 3 hours.

For now students and other researchers such as astronomers and molecular biologists will be able to use the grid, though.  Using the grid's power scientists analyzed 140 million  possible malaria fighting compounds to develop more effect drugs.  This analysis would have taken a traditional internet PC hundreds of years.

Doyle believes strongly that the grid's technology is coming soon to businesses and the consumer.  He says, "Projects like the grid will bring huge changes in business and society as well as science.  Holographic video conferencing is not that far away. Online gaming could evolve to include many thousands of people, and social networking could become the main way we communicate.  The history of the internet shows you cannot predict its real impacts but we know they will be huge."


Comments     Threshold


This article is over a month old, voting and posting comments is disabled

RE: Once again...
By Oregonian2 on 4/7/2008 8:40:34 PM , Rating: 2
I just read that article. It has some good points but most of it is promotional trash spoken in the writer's interest -- including taking things out of context. What it doesn't talk about is where the money comes from to finance that tremendous fiber infrastructure to the home. Did they spend a lot of capex for DSL to the home? Sure, for the same money they can provide for a huge number of DSL customers on existing copper as compared to having to install new fiber to the home for fewer people.

Saying that they plan to build wonderful things and then not do it is, like, "what's new". Look at a lot of subjects in Dailytech, where they talk about some form of vapor-ware, just as those systems were. They all have plans until money intervenes, or lack thereof. Off the top of my head, excepting for Verizon and maybe one other, most all of the big telecoms have been doing very badly. Like in losing money. Our area has Verizon and Quest, where Quest is probably the worst. Surprised they haven't gone bankrupt (may still do that) -- not sure what happens to service when that happens (glad I'm in a Verizon area -- formerly GTE).

One of the big things missing is that there had been expectations of a certain amount of revenue flow. Especially from long distance voice service that had been the big money source in the olden days. Competition of VOIP, cell phones, and third party services has driven down the cost of long distance to make it almost no different from local service in terms of price to the customer (and on my cell phone they are in fact exactly equivalent). All that expected revenue that didn't come had been planned to be the source of money to build the new systems. The new systems can't finance themselves because of the catch-22 situation (particularly when there is a long period before a built system even breaks even). Plus they got burnt seriously upon the dot-com crash. I suspect that makes them a bit more reluctant to invest heavily on wild expectations of customers coming if they only build it.

As to speed of links. Those who are served by the newest FiOS links using G-PON technology (made by Alcatel-Lucent), customers actually receive data at a 2.4 Gbps rate and send data back at a 1.2Gbps rate (downlinks are addressed packets on a shared optical pipe, uplink is dynamically allocated timeslot based). You just aren't allowed to average higher than the offered services provided, but the raw speed is there and is delivered into the home (even if not allowed to be used w/o much lower limits).


"Well, there may be a reason why they call them 'Mac' trucks! Windows machines will not be trucks." -- Microsoft CEO Steve Ballmer

Related Articles













botimage
Copyright 2014 DailyTech LLC. - RSS Feed | Advertise | About Us | Ethics | FAQ | Terms, Conditions & Privacy Information | Kristopher Kubicki