backtop


Print 39 comment(s) - last by callmeroy.. on Apr 9 at 2:20 PM


D-Wave's 16 qubit quantum computer is the pride of current quantum computers   (Source: D-Wave)
A team from Australia suggests that not only will ternary data be helpful in the budding field of quantum computing, but practically necessary

Generations of computer scientists grew up under the notion that ternary computing was just around the corner. Modern computers store information in a binary system, a logical representation of true and false.  Ternary computing, on the other hand, stores information as a representation of false, null and true; 0, 1, 2 or -1, 0 and 1. 

Computer storage methods going back to punch cards made binary computing methods sensible.  When storage moved to magnetic and transistor-based alternatives, the binary system continued to flourish -- and any reason to switch to a ternary system was nonessential with prolific and scalable storage.

But with the advent of quantum computing, ternary computing has a new cause.  Universal quantum logic gates, the building blocks of infant quantum computing, require hundreds of gates in order to complete any useful work.  D-Wave's quantum computer, announced last year, consists of only 16 qubits -- just enough for a controlled NOT gate. 

It's an inevitability that quantum computers will continue to scale, even based on current technologies. In the meantime a team lead by University of Queensland's B. P. Lanyon proposed a new method to scale quantum computers faster by exploiting the well researched fields of ternary computing.

The modern representation of true or false can be expressed as a bit.  The quantum computing equivalent of a bit is dubbed a qubit.  Traditional computers that store data in ternary operations are dubbed trits; the quantum equivalent is called a qutrit.

What makes Lanyon's method truly innovative is that by using qutrits for universal quantum gates instead of qubits, researchers can reduce the number gates needed in a computer significantly. 

Lanyon proposes that a computer that would traditionally take 50 conventional quantum gates could use as few as 9 gates using the ternary method. 


Comments     Threshold


This article is over a month old, voting and posting comments is disabled

By KristopherKubicki (blog) on 4/7/2008 12:30:11 PM , Rating: 3
Well, paradoxes aside it does seem possible that you can open up a wormhole with a device -- and possibly send data through it. The only problem is that you can only communicate with future you that has the same device open. Also the amount of energy seems to be a problem (seriously unfathomable amounts of energy).

But, Einstein and others have proposed it possible.


"If they're going to pirate somebody, we want it to be us rather than somebody else." -- Microsoft Business Group President Jeff Raikes

Related Articles



Latest Headlines
4/21/2014 Hardware Reviews
April 21, 2014, 12:46 PM
4/16/2014 Hardware Reviews
April 16, 2014, 9:01 AM
4/15/2014 Hardware Reviews
April 15, 2014, 11:30 AM
4/11/2014 Hardware Reviews
April 11, 2014, 11:03 AM










botimage
Copyright 2014 DailyTech LLC. - RSS Feed | Advertise | About Us | Ethics | FAQ | Terms, Conditions & Privacy Information | Kristopher Kubicki