Print 45 comment(s) - last by Darkskypoet.. on Mar 19 at 11:01 PM

Full of promises about saving the Earth and conserving energy, could automakers and visionaries be missing one big thing?

Even though automakers and environmentalists are pushing new electric and hybrid electric cars, claiming less pollution to make our Mother Earth unhappy with our wasteful ways, it seems they come with demons of their own. Well, maybe not so much.

The media has certainly been filled with talk of the cleaner cars lately. Everything from MIT's City Car to the Lightning Car Company's 700HP sports car to Chevrolet’s Equinox fuel cell SUV which DailyTech got to take for a little spin this January. What's the deal? Well, obviously if you have cars running on electricity, they aren't churning out megatons of air and water pollutants each year. Well, the cars won't be, but the whole "where does the power get made to power the cars then" quandary can be fought with later.

Today we'll make note of a much stranger side effect of all these silent, battery and (noble) gas driven people movers. From the University of Texas at Austin comes research projecting that there's going to be a pretty large quantity of one of our most precious natural resources gobbled up by these electrics. No, it's not oil, trees, hydrogen or even indium - we're talking about water.

It's not much of a shocker, it's true. Water is probably our most precious resource, but barring evils like pollution and hydrolysis, it's one of Earth's most abundant and easily renewable. So we make a bit more steam, what's the big deal, right? Let's let the research speak for itself for a moment.

We compare figures from literature and government surveys to calculate the water usage, consumption, and withdrawal, in the United States during petroleum refining and electricity generation. In displacing gasoline miles with electric miles, approximately 3 times more water is consumed (0.32 versus 0.07–0.14 gallons/mile) and over 17 times more water is withdrawn (10.6 versus 0.6 gallons/mile) primarily due to increased water cooling of thermoelectric power plants to accommodate increased electricity generation. Overall, we conclude that the impact on water resources from a widespread shift to grid-based transportation would be substantial enough to warrant consideration for relevant public policy decision-making. (PDF)

Wow. 10.92 gallons of water per mile. It's a pretty staggering number. Thinking that my daily commute used to be about 40 miles, not including zipping around town for random things, that's more than 400 gallons in one day. That's probably more than the average person uses all week between hygiene and self hydration.

On the whole the conclusion they come to isn't exactly life-threatening, but it could become a problem, as they point out, for areas where water shortages are already experienced yearly.

In reality, a study like this doesn't really say much about how much pollution we can or can't stop by converting to electric person delivery, other than the inflated power generation, and subsequent water requirements, that will be needed to charge all these cars (we weren't going to talk about that though). But it does point out a much simpler fact that though we may think we're heading in the right direction by cutting down our toxic pollution output, sometimes we forget to think about the simple things we might be sacrificing on the way.

Comments     Threshold

This article is over a month old, voting and posting comments is disabled

RE: Really
By Master Kenobi on 3/12/2008 10:40:35 AM , Rating: 1
But it has to come from somewhere. In a time when we are already strapped for water in many areas (especially during the summer), this will take more of that water out of use by everyday people. I suppose the solution to this is to pump in ocean water and purify it for regular use. Will still likely need to pump water across country though for states that don't have easy access to ocean water.

RE: Really
By bighairycamel on 3/12/2008 10:49:42 AM , Rating: 2
But it has to come from somewhere.

Yes but the 10-11 g/mi factors in water used for cooling, which would be in a closed circuit being recycled over and over again. Sure an occasional top-off would be needed and a rare flush-and-fill, but minus this water used for cooling the number probably drops to something much more negligable.

I highly HIGHLY doubt the vehicle is consuming (a far different definition that using) 10-11 G/mi.

RE: Really
By pauldovi on 3/12/2008 11:41:40 AM , Rating: 2
Closed Circuit? What is going to cool that hot water?

Typically rivers are circuited through power plants and back out to the regular water.

Would be great if hot water supply came from Power Plants. :)

RE: Really
By TheWizardofOz on 3/12/2008 12:07:35 PM , Rating: 5
Ever heard of the term "radiator" ?

RE: Really
By Chris Peredun on 3/12/2008 1:10:53 PM , Rating: 5
Barring being arrested for violating the laws of thermodynamics, I imagine some of the heat could be recaptured and used to generate further power.

RE: Really
By stephenfs on 3/12/2008 1:43:22 PM , Rating: 3
A wise man once said, "In this house we obey the laws of thermodynamics!" -Homer Simpson

RE: Really
By Hoser McMoose on 3/13/2008 2:24:36 AM , Rating: 2
The wording might be a bit off, but if I understand the previous poster correctly there is no violation of any laws of thermodynamics here. Essentially capturing some of the waste heat is what a combined cycle thermoelectric power plant is all about. Pretty much all new natural gas and some new coal power plants use this concept.

The trick is not to get energy from nothing, it's just to raise the efficiency of energy conversion from ~30% up to ~40 or even 50%.

More energy converted to electricity means less energy wasted in heat and therefore less water needed to cool the power plant (not to mention less fuel and pollution).

RE: Really
By Captain Orgazmo on 3/13/2008 6:12:36 PM , Rating: 2
Oh yeah, great. Radiate all that extra heat back into the atmosphere, warm the planet, kill the seagulls, kill your kids. Why not just start carpet bombing our own cities right now?


RE: Really
By DragonMaster0 on 3/12/2008 7:27:17 PM , Rating: 2
Closed Circuit? What is going to cool that hot water?
How does a watercooled PC work?

RE: Really
By KristopherKubicki on 3/12/2008 8:48:42 PM , Rating: 2
Cooling your processor is not the same as cooling a nuclear reactor core. There are considerably different technologies of scale.

RE: Really
By Mitch101 on 3/13/2008 11:02:04 AM , Rating: 5
There goes overclocking a nuclear reactor.

Maybe thermaltake will come up with a nuclear reactor cooling solution. Fan noise might be a problem.

RE: Really
By geddarkstorm on 3/12/2008 11:33:59 AM , Rating: 3
And it has to go somewhere too. That water used for cooling can be piped right back in to circulation. Even if it's turned to steam, you have condensers to recapture most of the water.

Nonetheless, it is true that water supply must be kept in mind at all times when evaluating what technologies are practical to pursue, but I don't think it's such a "doomsday" sounding problem as the research sounds first glance.

RE: Really
By clovell on 3/12/2008 5:58:37 PM , Rating: 2
> These increases in water usage represent approximately 0.2–0.3% (28) and 3% (27), respectively, of overall U.S. water consumption (100,000 Mgal/d freshwater in 1995) and withdrawal (408,000 Mgal/d in 2000)

From the manuscript.

"People Don't Respect Confidentiality in This Industry" -- Sony Computer Entertainment of America President and CEO Jack Tretton

Latest Headlines

Most Popular ArticlesAre you ready for this ? HyperDrive Aircraft
September 24, 2016, 9:29 AM
Leaked – Samsung S8 is a Dream and a Dream 2
September 25, 2016, 8:00 AM
Inspiron Laptops & 2-in-1 PCs
September 25, 2016, 9:00 AM
Snapchat’s New Sunglasses are a Spectacle – No Pun Intended
September 24, 2016, 9:02 AM
Walmart may get "Robot Shopping Carts?"
September 17, 2016, 6:01 AM

Copyright 2016 DailyTech LLC. - RSS Feed | Advertise | About Us | Ethics | FAQ | Terms, Conditions & Privacy Information | Kristopher Kubicki