backtop


Print 56 comment(s) - last by mlembeck.. on Mar 12 at 11:38 AM

New research into "mixed reality states" promises Matrix-like "whoa"

Real-time model-based feedback is something that is far from commonplace in today's world.  The basic concept of real-time feedback is to take a physical system, modeled by mathematic equations, and then couple it with a computer as a virtual system. 

Sensor monitoring gives the processing logic an idea of how well the real world system is conforming to the theoretical model.  The results are processed and yield adjustments (feedback) to the real world system to make it in tune with the theoretical model.  The result is that the virtual and real world models converge into a single "mixed reality" system, bridging a the virtual (theoretical) and physical world.

Such an approach holds large benefits for everything from car handling and fuel economy, to better aircraft dynamics and smoother robotic control.  To accomplish such useful applications, researchers working on mixed reality had to start simple -- real simple. 

Researchers at the University of Illinois created a virtual pendulum and a real world counterpart that behaves as the world's first mixed reality system.  Bidirectional instantaneous coupling, adjustments both to the real world pendulum by motor feedback and the virtual pendulum by tweaking mathematical parameters, yielded a single system in which both systems' are synchronized.  The result is two pendulums swinging as one.

The experiment, the first fully successful one of its kind, sounds simple but raises mind-blowing questions about reality.  According to Illinois physicist Alfred Hubler, "In a mixed reality state there is no clear boundary between the real system and the virtual system.  The line blurs between what’s real and what isn’t."

Hubler describes the pendulums synchronization, stating, "[The pendulums] suddenly noticed each other, synchronized their motions, and danced together indefinitely."

Two physical mechanical systems have been previously coupled, but never before has a real world and virtual one been mixed.  Such a breakthrough was only possible thanks to ultra-fast computing, which allowed real-time processing of the pendulum data, and real-time response.  Hubler states, "Computers are now fast enough that we can detect the position of the real pendulum, compute the dynamics of the virtual pendulum, and compute appropriate feedback to the real pendulum, all in real time."

Hubler thinks that eventually coupling of the real and virtual worlds, may lead to it being hard to tell what is real and what is fake -- a topic immortalized by generations of science fiction writers.   Hubler worries people may become defensive and paranoid in the real world, based on threats in the virtual world.

The research was funded by the National Science Foundation and will be presented by Hubler at the annual American Physical Society meeting, which will be held in New Orleans, March 10-14, 2008.


Comments     Threshold


This article is over a month old, voting and posting comments is disabled

RE: Say What
By DASQ on 3/10/2008 4:41:16 PM , Rating: 2
And vice versa. The physical system can mimic the computer system, and the computer system can mimic the physical system.


RE: Say What
By BoxCutterLou on 3/10/2008 4:54:01 PM , Rating: 2
"The physical system can mimic the computer system"

AHH I SEE! Well after staring at this phraze for a few moments. This is incredible. Who's in control should be the question at hand, not which one is real.


RE: Say What
By DASQ on 3/10/2008 10:33:03 PM , Rating: 2
You have a point, but following that thought, it doesn't matter which is real, because whoever is controlling it can make each alternatively real or "unreal" at any given time. "He" can essentially switch the two back and forth, if the two systems will synchronize as well as it should.

If you can't tell the difference between the two, does it matter which is "real" or not? Because if the physical system is real, it's simply mimicking the 'virtual' system. If the 'virtual' system is what you are perceiving, then it's simply mimicking the physical system anyway. It doesn't matter.

The only constant is the control.


RE: Say What
By JustTom on 3/11/2008 12:39:20 AM , Rating: 5
You'd be able to tell the difference easily; stand in front of both pendulums, the one that smacks you in the nose is the real one.


RE: Say What
By paydirt on 3/11/2008 9:10:39 AM , Rating: 2
Sounds like mental masturbation to me.


RE: Say What
By bhieb on 3/10/2008 5:09:16 PM , Rating: 5
So if I unplug the computer does the real world pendulum stop? How about disappear in front of my eyes, since the virtual one has been destroyed is the physical one. If not then this is no more than a computer controlled pendulum.


RE: Say What
By bhieb on 3/10/2008 5:12:56 PM , Rating: 2
Let me clear up that last part it is either a computer controlled pendulums, or a real time pundulum monitor. Either way they did not...
quote:
"suddenly noticed each other, synchronized their motions, and danced together indefinitely."


No they did not you idiot the hours of programming is what made them interact, nothing happened suddenly or indefinately.


RE: Say What
By DASQ on 3/10/2008 11:10:16 PM , Rating: 2
Before we resort to name calling, let me try and clarify the article some:

A motor was attached to the real pendulum. Software controlled the other.

If you told the software to speed up the pendulum slowly, the motorized pendulum would follow along precisely. Obviously a pendulum does not speed up without external stimuli, so you'd notice something was wrong. But you can't tell which pendulum is real or not.

The 'hours of programming' can be thought of as the computer version of the brain keeping track of the two pendulums and updating each perfectly, synchronously. The programming is 'smart' enough to know when one has change, and will adjust the other in real time to match it. I think that's just a short sighted comment :/


RE: Say What
By DASQ on 3/10/2008 10:41:29 PM , Rating: 2
If you told the computer pendulum to stop, the real world pendulum would stop as quickly (slowly) as the electronic one would.

The "disappearing" pendulum is kind of irrelevant. The point is, as long as someone cannot tell the difference between the "computer" pendulum and the "physical" pendulum (for instance, in a room with two small boxes with viewing windows, one is a real pendulum, and one is a hyper-realistic computer monitor displaying a 'perfect' render), then they are both as real as you, standing there staring at the two pendulums. You can't tell which is real or not.

The pendulums simply represent systems in which reality or illusion are displayed. To maintain the illusion, we have to assume that if your pendulum 'disappeared' for some reason, the computer would somehow make it disappear that followed our rules of physics, so you wouldn't realize that it wasn't "real". Of course, like in the Matrix, this is sometimes impossible, resulting in the person "plugged in" rejecting the Matrix, and "waking up".


RE: Say What
By bhieb on 3/11/2008 9:34:12 AM , Rating: 2
Ok first if you attach a motor to a pendulum it is no longer a pendulum by definition a pendulum swings freely. So now you have created a computer controlled robotic arm.

Secondly if all you are talking about is if it is real visually then yes looking at two in a box, one could not tell the difference. However that is not how we judge reality, if I reach into said box and cannot touch it then it is not real.

All I am trying to say here is that this is not reality, it is just a mimic of it. Simple 2-way robotics if you will. The computer adjusts an image based on inputs from a physical device, it is a mimic not reality.


RE: Say What
By DASQ on 3/11/2008 10:40:09 AM , Rating: 2
... the fact that the physical pendulum has a motor is irrelevant. You're utterly missing the entire point of the experiment. The viewer has no idea the pendulum has a motor attached to it.

Forget it, I give up, re-read the comments in this article and the article itself, if you still don't get it, then either you're not old enough to get it, or you're just not going to get it at all.


"Young lady, in this house we obey the laws of thermodynamics!" -- Homer Simpson














botimage
Copyright 2014 DailyTech LLC. - RSS Feed | Advertise | About Us | Ethics | FAQ | Terms, Conditions & Privacy Information | Kristopher Kubicki