backtop


Print 101 comment(s) - last by Integral9.. on Mar 10 at 8:32 AM

New research into nuclear's feasibility shows that it simply does not make for a sole fossil fuel replacement.

The death knells of the Earth's dwindling fossil fuel supply have helped to prompt a growing push for alternative fuels.  Whether it be cellulosic ethanol powering the next generation of hybrid vehicles or microbial hydrogen driving advanced fuel cells, America's top technology corporations are making massive investments in alternative energy.  Basically, alternative energy advocates remain split about what is the best solution -- solar power, wind power, biofuels, hydrogen, and nuclear power are seen as the best bets.

Not holding out much hope for an exotic solution, many have turned in the last few years to seriously considering nuclear as a potential replacement to fossil fuel demand.  The result has been resurgence in nuclear efforts.  In the U.S. an application has been filed by NRG Energy for the first new nuclear plant in 30 years.  In Canada, a nuclear research reactor taken temporarily offline was quickly brought online after swift legislative action.

However, despite the growing enthusiasm there has already been one major hiccup.  The record drought that has been plaguing the U.S. Southeast is threatening to cripple the nuclear industry in this region, as many of the plants require large amounts of water.

Now, a new research study, conducted by Physicist Joshua Pearce of Clarion University of Pennsylvania puts another dent in nuclear efforts.  Professor Pearce's research, published in Inderscience's International Journal of Nuclear Governance, Economy and Ecology, indicates that while nuclear research and small-scale growth remain promising, large scale growth remains non-viable.

Professor Pearce is actually an advocate for nuclear power.  He warns that his research should not be misinterpreted.  Professor Pearce suggests that the nuclear power industry focuses its efforts on improving efficiency.  He gives two easy ways to accomplish this.  The first is to utilize only the highest grade ores, saving on refining energy costs.  Secondly, he suggests the industry adopt gas centrifuge technology for ore enrichment, which is considerably more efficient than the currently used gaseous diffusion methods.

Professor Pearce feels that plants must also adopt technology for capturing and distributing their waste heat.  He points out that nuclear plants dump large amounts of heat into their surroundings, a practice which both wastes energy and can cause significant harm to the environment.  Professor Pearce believes that current nuclear weapon stockpiles worldwide should be dismantled and their nuclear fuel "down-blended".  He points out that this could produce a bounty of nuclear fuel.

The not-so-good news which Professor Pearce points out is that nuclear is simply not a viable candidate for large-scale growth.  In order for nuclear power to maintain growing future power demands and the shrinking fossil fuel power supplies, between 2010 and 2050 a growth rate of over 10 percent a year would be necessary according to Professor Pearce.  This, he says, is simply not possible.

Professor Pearce points out that such a growth program would simply cannibalize older plant's power output to provide the power needed to maintain the processes involved with building the new plants and refining ore for them, leaving no power for human needs.  Large-scale growth would require massive power investment in terms of plant construction, plant operation, mining infrastructure expansion, and energy investments to refine ore.  Professor Pearce says the books simply don't balance -- these power needs could not be met by the energy produced from the refined ore.

He points to a significant problem with large scale growth.  Large-scale growth, barring the discovery of new reserves would necessitate the use of lower grade uranium.  This sets an additional limit on growth.  As Professor Pearce points out, "The limit of uranium ore grade to offset greenhouse gas emissions is significantly higher than the purely thermodynamic limit set by the energy payback time."

Professor Pearce also points out to environmentalists and global warming skeptics alike that nuclear power is hardly an "emission-free panacea", as he puts it.  All aspects of plant operation, including plant construction, mining/milling of uranium ores, fuel conversion, enrichment, fabrication, operation, decommissioning, and long-term and short-term waste disposal, require massive amounts of energy provided by fossil fuels.  The burning of these fossil fuels will create large amounts of greenhouse emissions, a criticism oft-leveled against the solar and wind power industries by nuclear advocates.

While emissions are certainly troublesome, the simple energy requirements infeasibility, if accurate, would almost certainly nix the large scale expansion of nuclear power in its current form.  If Professor Pearce's research withstands the test of review then it offers little choice but to pursue his suggested strategies -- develop more advanced nuclear power on a smaller scale and pursue other alternative energy solutions as a major source of capacity.



Comments     Threshold


This article is over a month old, voting and posting comments is disabled

By Keeir on 3/6/2008 5:11:20 AM , Rating: 2
I have no idea why you were rated down for this

We have a PhD (I assume in Physics) writing a paper on the economics of Nuclear Plant production based on current geology , construction methods, etc.

The person also happens to be an associate professor at a school that is little more than a Community College type level. (I know. I have been to Clarion. And California. And IUP. And Dozens of other small schools the same size in Western Pennsylvania)

This doesn't discount his research as invalid, but I strongly recommend everyone to read the paper carefully as on the surface at least the Author is not "The Expert" or even "Well-Known" in the field of Nuclear "Economics". Nor can I find mention of a credible co-author. A truly comprehensive study on feasibility of Nuclear Power should include at least co-authors who are experts in the field.

He also seems to have a strong bent towards Solar Energy and goes so far as set up idyllic industrial situations to allow Solar to be viable economically. “Industrial symbiosis of very large-scale photovoltaic manufacturing”, Renewable Energy, Volume 33 (2008) pages 1101–1108. Industrial Symbiosis is best summarized as constructive recycling of waste or near waste by-products of manufacturing. I believe DailyTech had an article on IBM recycling used Silicon. Again, I question his technical backing to writing this article solo. Such a paper should be co-authored by an expert in Industrial Engineering/Industrial Economics.


"This is about the Internet.  Everything on the Internet is encrypted. This is not a BlackBerry-only issue. If they can't deal with the Internet, they should shut it off." -- RIM co-CEO Michael Lazaridis














botimage
Copyright 2014 DailyTech LLC. - RSS Feed | Advertise | About Us | Ethics | FAQ | Terms, Conditions & Privacy Information | Kristopher Kubicki