Print 101 comment(s) - last by Integral9.. on Mar 10 at 8:32 AM

New research into nuclear's feasibility shows that it simply does not make for a sole fossil fuel replacement.

The death knells of the Earth's dwindling fossil fuel supply have helped to prompt a growing push for alternative fuels.  Whether it be cellulosic ethanol powering the next generation of hybrid vehicles or microbial hydrogen driving advanced fuel cells, America's top technology corporations are making massive investments in alternative energy.  Basically, alternative energy advocates remain split about what is the best solution -- solar power, wind power, biofuels, hydrogen, and nuclear power are seen as the best bets.

Not holding out much hope for an exotic solution, many have turned in the last few years to seriously considering nuclear as a potential replacement to fossil fuel demand.  The result has been resurgence in nuclear efforts.  In the U.S. an application has been filed by NRG Energy for the first new nuclear plant in 30 years.  In Canada, a nuclear research reactor taken temporarily offline was quickly brought online after swift legislative action.

However, despite the growing enthusiasm there has already been one major hiccup.  The record drought that has been plaguing the U.S. Southeast is threatening to cripple the nuclear industry in this region, as many of the plants require large amounts of water.

Now, a new research study, conducted by Physicist Joshua Pearce of Clarion University of Pennsylvania puts another dent in nuclear efforts.  Professor Pearce's research, published in Inderscience's International Journal of Nuclear Governance, Economy and Ecology, indicates that while nuclear research and small-scale growth remain promising, large scale growth remains non-viable.

Professor Pearce is actually an advocate for nuclear power.  He warns that his research should not be misinterpreted.  Professor Pearce suggests that the nuclear power industry focuses its efforts on improving efficiency.  He gives two easy ways to accomplish this.  The first is to utilize only the highest grade ores, saving on refining energy costs.  Secondly, he suggests the industry adopt gas centrifuge technology for ore enrichment, which is considerably more efficient than the currently used gaseous diffusion methods.

Professor Pearce feels that plants must also adopt technology for capturing and distributing their waste heat.  He points out that nuclear plants dump large amounts of heat into their surroundings, a practice which both wastes energy and can cause significant harm to the environment.  Professor Pearce believes that current nuclear weapon stockpiles worldwide should be dismantled and their nuclear fuel "down-blended".  He points out that this could produce a bounty of nuclear fuel.

The not-so-good news which Professor Pearce points out is that nuclear is simply not a viable candidate for large-scale growth.  In order for nuclear power to maintain growing future power demands and the shrinking fossil fuel power supplies, between 2010 and 2050 a growth rate of over 10 percent a year would be necessary according to Professor Pearce.  This, he says, is simply not possible.

Professor Pearce points out that such a growth program would simply cannibalize older plant's power output to provide the power needed to maintain the processes involved with building the new plants and refining ore for them, leaving no power for human needs.  Large-scale growth would require massive power investment in terms of plant construction, plant operation, mining infrastructure expansion, and energy investments to refine ore.  Professor Pearce says the books simply don't balance -- these power needs could not be met by the energy produced from the refined ore.

He points to a significant problem with large scale growth.  Large-scale growth, barring the discovery of new reserves would necessitate the use of lower grade uranium.  This sets an additional limit on growth.  As Professor Pearce points out, "The limit of uranium ore grade to offset greenhouse gas emissions is significantly higher than the purely thermodynamic limit set by the energy payback time."

Professor Pearce also points out to environmentalists and global warming skeptics alike that nuclear power is hardly an "emission-free panacea", as he puts it.  All aspects of plant operation, including plant construction, mining/milling of uranium ores, fuel conversion, enrichment, fabrication, operation, decommissioning, and long-term and short-term waste disposal, require massive amounts of energy provided by fossil fuels.  The burning of these fossil fuels will create large amounts of greenhouse emissions, a criticism oft-leveled against the solar and wind power industries by nuclear advocates.

While emissions are certainly troublesome, the simple energy requirements infeasibility, if accurate, would almost certainly nix the large scale expansion of nuclear power in its current form.  If Professor Pearce's research withstands the test of review then it offers little choice but to pursue his suggested strategies -- develop more advanced nuclear power on a smaller scale and pursue other alternative energy solutions as a major source of capacity.

Comments     Threshold

This article is over a month old, voting and posting comments is disabled

RE: Perspective
By geddarkstorm on 3/5/2008 2:56:02 PM , Rating: 5
Diversity of power sources is apparently the key. We can't rely completely on nuclear, or solar, or wind, or hydro; but all those combined makes a potent force. We definitely need some new breakthroughs though.

RE: Perspective
By AngrySaki on 3/5/2008 3:17:12 PM , Rating: 3
Ahhh, the Captain Planet Approach (tm).

By your powers combined...

uhhh... yeah

RE: Perspective
By geddarkstorm on 3/5/2008 3:52:48 PM , Rating: 5
"Nuclear!" "Wind!" "Solar!" "Hydro!" "HEART!"

"By your powers combined.. I am.. GODZILLA!"

Either that, or a really horrible case of congestive heart failure.

RE: Perspective
By Haltech on 3/5/2008 10:23:14 PM , Rating: 2
unfortunetly many people dont see it this way and think if everyone puts solar panels on their houses then greenhouse gases are no more. Education is Power

RE: Perspective
By Ringold on 3/5/2008 11:21:22 PM , Rating: 2
I simply don't see the inherent wisdom in such comments. We've got diverse supplies now; oil, coal, natural gas, nuclear, and hydro in places. That the future resembles the past should just be obvious.

That said, France seems to have little trouble relying heavily on nuclear.

RE: Perspective
By BlackIceHorizon on 3/6/2008 5:42:42 PM , Rating: 2
We absolutely need to continue research into future energy technologies. But the truth is that today and for the next several decades, there is no other viable alternative that could simultaneously

1) Replace coal as the majority (or even the plurality) of our electricity production.

2) Provide this power with the high levels of up-time required for a consistent power supply.

3) Do so without incurring a massive economic cost.

For all of its nay saying, this article addresses no new issues. Notice the absence of quantified evidence for the supposed lack of nuclear's viability? Consider the following - and do your own research into the technicalities - before you make up your mind.

The main claim this article brings forth is that scaling nuclear power to supply the majority of our energy is not feasible, because it will require too much energy. First note the lack of quantitative evidence, then consider the following facts:

- For nuclear plants running on Uranium enriched through gas diffusion, the lifetime ratio of power produced:power consumed, including all mining, construction, operation and amortization costs is >30:1

- If nuclear plants run on Uranium enriched by centrifuge (easily feasible technically, just currently not used in the U.S. for overstated proliferation concerns), the energy production:consumption ratio is >50:1

- This the highest energy production:consumption ratio currently available. It's higher than coal, oil, natural gas, wind and solar. I think the ratio for coal, our current favorite, is between 20:1 and 30:1. It will only be lower for plants that have to pump CO2 underground when carbon taxes come.

- Biofuels are terrible in this regard. Ethanol produced from corn barely breaks 1:1 and even cellulosic ethanol, one of the most efficient, only increases this to around 6:1

Clearly, his assessment that the integration of more nuclear power into our energy mix is energetically impossible is either 1) incorrect or 2) there is literally no way to meet the world's future energy needs without causing brownouts or blackouts. I strongly doubt the latter.

"I f***ing cannot play Halo 2 multiplayer. I cannot do it." -- Bungie Technical Lead Chris Butcher

Most Popular Articles5 Cases for iPhone 7 and 7 iPhone Plus
September 18, 2016, 10:08 AM
Laptop or Tablet - Which Do You Prefer?
September 20, 2016, 6:32 AM
Update: Samsung Exchange Program Now in Progress
September 20, 2016, 5:30 AM
Smartphone Screen Protectors – What To Look For
September 21, 2016, 9:33 AM
Walmart may get "Robot Shopping Carts?"
September 17, 2016, 6:01 AM

Copyright 2016 DailyTech LLC. - RSS Feed | Advertise | About Us | Ethics | FAQ | Terms, Conditions & Privacy Information | Kristopher Kubicki