backtop


Print 37 comment(s) - last by Spivonious.. on Jan 25 at 9:36 AM

Ashwood memory architecture allows for much faster memory speeds

Chipmakers realized long ago that extracting more performance from computer processors could be accomplished in ways other than simply reducing the size of the manufacturing process to squeeze more transistors onto a die.

One of the ways chipmakers improved performance was by building multi-core CPUs, like Intel's Penryn processors, that allow for parallel execution of data. Memory chips haven’t been able to keep up with the performance increases we are seeing in processors making for a bottleneck in the performance of computer systems and other devices.

In order to tackle this problem, a cryptographer named Joseph Ashwood has developed a new memory architecture that allows for multi-core memory.

Ashwood dubbed his memory architecture the Ashwood Architecture. According to EETimes the Ashwood architecture integrates smart controller circuitry next to the memory array on a single chip. This provides parallel access to the memory array for hundreds of concurrent processes leading to increased throughput and lower average access times.

Ashwood says, “My design borrows extensively from today's modern multicore CPUs. As far as concurrency goes, my memory architecture shares some features with Fibre Channel.”

Ashwood says his architecture can hit 16Gbytes per second compared to the DDR2 limit of 12 Gbytes per second. The hallmark of the Ashwood architecture is that the larger the number of bit cells in the memory the better the performance.

Ashwood does admit to a couple downsides to his design. The first is that his design is paper only, though it was independently verified by researchers from Carnegie Mellon University. No design was tested of the architecture at the electrical signal level.

The second drawback is that parallel access overhead of the architecture slows down access time to individual memory cells. However, Ashwood says that the parallel nature of his architecture more than makes up for any slowdowns by executing more commands at the same time.

Ashwood has filed a patent on his architecture that is still pending; until the patent is granted the intricate details of his architecture remain unknown.



Comments     Threshold


This article is over a month old, voting and posting comments is disabled

RE: Bandwidth?
By PandaBear on 1/17/2008 3:56:25 PM , Rating: 2
We already have that, it is called bank interleaves.

The draw back is you now have very large minimum transfer size, and that can kill latency.

And mixing logics (need low capacitance) and memory (need high capacitance) will make production, yield, power, and speed difficult to do well. I bet he never figure out why people don't just integrate DRAM into ASIC, or has never worked in devices or processes side of the semiconductor business.


"I'd be pissed too, but you didn't have to go all Minority Report on his ass!" -- Jon Stewart on police raiding Gizmodo editor Jason Chen's home

Related Articles
Engineers Explain 45nm Delays, Errata
January 16, 2008, 10:32 AM













botimage
Copyright 2014 DailyTech LLC. - RSS Feed | Advertise | About Us | Ethics | FAQ | Terms, Conditions & Privacy Information | Kristopher Kubicki