Researchers claim the new high-capture solar material will be mass-producible within five years and will be capable of being added as a complement to existing installations.  (Source: After Gutenberg)
Efficiencies should get a healthy boost from capturing a boarder range of wavelengths

Traditionally, solar powered devices suffer from a two-fold problem.  First, they have difficulty converting the light they capture to electricity.  Second, they only capture a small band of wavelengths out of the wide range of wavelengths found in sunlight striking the Earth.  Improving in either area can offer gains to the net power output (and efficiency) of a solar cell.

Researchers at the University of Missouri are claiming a breakthrough in the second category.  They claim [press release] to have developed a device that can capture 90 percent of sunlight, versus the 20 percent that current photovoltaic (PV) panels capture.

To capture the wider range of wavelengths, Patrick Pinhero, associate professor of chemical engineering, used a special thin, moldable sheet of small antennas called nantenna.  The resulting material converts heat to electricity and can be used both for industrial heat recycling and for solar designs.  In solar designs it is capable of collecting both optical (visible) sunlight and the near infrared band sunlight that most cells miss.

Professor Pinhero collaborated with researchers at the Idaho National Laboratory and Garrett Moddel, an electrical engineering professor at the University of Colorado to develop a complete material with electronic devices capable of harvesting the heat and light collected by the nantenna.

Professor Pinhero is working to port the resulting device to a mass-producable design.  He's currently securing U.S. Department of Energy funding and money from private investors to accomplish this.  To that end, he's enlisted the help of Dennis Slafer of MicroContinuum, Inc., of Cambridge, Mass., a solar power and alternative energy firm.

"Our overall goal is to collect and utilize as much solar energy as is theoretically possible and bring it to the commercial market in an inexpensive package that is accessible to everyone," Professor Pinhero states.  "If successful, this product will put us orders of magnitudes ahead of the current solar energy technologies we have available to us today."

You can't fault Professor Pinhero for ambition.  He says that within five years he should be able to deliver a finished material that complements traditional PV panel designs in rooftop installations, solar power plant installations, or rooftop car panels.  This material would bump up the range of collected light, and by proxy bump up the cell's net efficiency and power output.

The instructor expects to create a broad range of commercial spinoffs based on the technology.  The spinoffs would be infrared (IR) detection based products, including contraband-identifying devices for airports and the military, optical computing, and infrared line-of-sight telecommunications.

A paper on the new device and material has been published [abstract] in the peer-reviewed Journal of Solar Energy Engineering.

"This week I got an iPhone. This weekend I got four chargers so I can keep it charged everywhere I go and a land line so I can actually make phone calls." -- Facebook CEO Mark Zuckerberg

Latest Blog Posts
T-Mobile Data Problems
Saimin Nidarson - Oct 20, 2016, 10:17 AM

Copyright 2016 DailyTech LLC. - RSS Feed | Advertise | About Us | Ethics | FAQ | Terms, Conditions & Privacy Information | Kristopher Kubicki